KServe v0.15.1版本发布:模型推理服务平台的重大更新
项目简介
KServe是一个开源的Kubernetes原生模型推理服务平台,它为数据科学家和机器学习工程师提供了在生产环境中部署、管理和扩展机器学习模型的能力。作为Kubeflow生态系统的重要组成部分,KServe简化了从模型训练到生产部署的整个流程,支持多种机器学习框架和推理运行时环境。
核心功能更新
1. 模型缓存机制优化
本次版本对模型缓存功能进行了重要改进,解决了PVC(持久卷声明)和PV(持久卷)在推理服务删除后意外移除的问题。这一改进确保了模型缓存能够持久化保存,避免了重复下载大型模型带来的时间和带宽消耗。对于经常需要重新部署相同模型的生产环境来说,这一优化可以显著提升效率。
2. vLLM运行时增强
vLLM作为高效的大语言模型推理引擎,在此版本中获得了多项增强:
- 新增了对Llama4和Qwen3等最新大语言模型架构的支持
- 实现了rerank(重排序)功能,提升了多候选输出的质量
- 集成了LM Cache(语言模型缓存),通过缓存中间结果减少重复计算
- 修复了v1版本中的后台引擎任务初始化问题
这些改进使得KServe在处理大语言模型推理任务时更加高效稳定。
3. HuggingFace运行时升级
HuggingFace Transformer库升级至4.51.0版本,同时添加了对bitsandbytes包的支持,这使得4位量化模型能够在KServe上运行。量化技术可以大幅减少模型内存占用,使更大的模型能够在有限资源的环境中部署。
4. 自动扩缩容改进
在自动扩缩容方面,本版本修复了KEDA scaledobject目标值设置问题,并改进了Knative自动扩缩容配置的处理逻辑。这些改进使得系统能够更精确地根据负载调整资源,在保证服务质量的同时优化资源利用率。
架构与稳定性增强
1. 多节点部署优化
针对Ray多节点部署场景,改进了节点计数和GPU资源计算的逻辑,使资源分配更加合理。这对于分布式推理场景尤为重要,可以避免资源浪费或不足的情况。
2. 测试与质量保证
版本包含了多项测试改进:
- 提高了REST客户端连接超时设置,增强了测试可靠性
- 修复了多处理测试中的不稳定问题
- 增加了代码覆盖率,提升了代码质量
- 添加了许可证检查和SBOM(软件物料清单)生成功能
这些改进使得KServe作为一个企业级平台更加可靠。
新功能亮点
1. 模型暂停与恢复
通过新增的服务器注解,用户现在可以暂停和恢复模型服务,而无需完全删除和重新创建。这一功能特别适合需要临时释放资源或进行维护的场景。
2. 推理图增强
InferenceGraph功能获得多项改进:
- 在状态中添加了DeploymentMode信息
- 防止了部署模式意外更改
- 修复了条件步骤未满足时的响应代码问题
这些改进使得复杂推理流水线的构建和管理更加直观可靠。
3. 元数据注入
现在可以在代理sidecar级别注入推理服务的元数据,这为日志记录和监控提供了更多上下文信息,便于问题排查和性能分析。
兼容性更新
- 将Go版本升级至1.24
- 添加了对Numpy 2.x的支持
- 移除了对Openvino的支持(在HuggingFace运行时中)
总结
KServe v0.15.1版本带来了从底层基础设施到上层功能的全面改进,特别是在大语言模型支持、资源管理和系统稳定性方面有显著提升。这些改进使得KServe作为生产级模型服务平台更加成熟可靠,能够满足企业日益复杂的AI部署需求。对于正在使用或考虑采用KServe的团队来说,这个版本值得升级。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00