OpenFold模型训练后ckpt文件的转换与应用指南
2025-06-27 21:15:06作者:秋泉律Samson
概述
在使用OpenFold进行蛋白质结构预测时,用户可能会遇到训练后生成的ckpt文件无法直接用于预测的问题。本文将详细介绍如何正确处理训练后的模型文件,以及如何将其转换为可用于预测的格式。
ckpt文件转换的必要性
OpenFold训练完成后会生成ckpt格式的模型文件,但这种格式不能直接用于run_pretrained_openfold.py脚本进行预测。主要原因在于:
- ckpt文件包含PyTorch Lightning训练时的完整状态信息,而预测只需要模型参数
- 预测脚本需要与AlphaFold兼容的npz格式模型文件
- 训练和预测时的模型配置可能存在差异
转换步骤详解
第一步:从ckpt提取模型参数
首先需要从ckpt文件中提取纯模型参数,去除训练相关的状态信息。可以通过修改train_openfold.py脚本实现:
def convert_to_pt(ckpt_path, output_path):
checkpoint = torch.load(ckpt_path)
model_state_dict = checkpoint['state_dict']
adjusted_state_dict = {}
for key in model_state_dict.keys():
adjusted_state_dict[key.replace('model.', "", 1)] = model_state_dict[key]
torch.save(adjusted_state_dict, output_path)
这段代码会:
- 加载ckpt文件
- 提取模型状态字典
- 移除参数名前缀"model."
- 保存为纯PyTorch模型文件(.pt)
第二步:转换为npz格式
获得.pt文件后,使用convert_of_weights_to_jax.py脚本将其转换为npz格式:
python convert_of_weights_to_jax.py /path_to/model.pt model_1 /path_to_output/model1.npz
注意这里使用model_1而非model_1_ptm配置,因为:
- model_1_ptm包含额外的TM-score预测头
- 训练时可能没有使用PTM配置
- 配置不匹配会导致参数加载错误
常见问题解决方案
参数缺失错误
当出现类似"Missing key(s) in state_dict"的错误时,通常是因为:
- 模型配置不匹配:确保训练和预测使用相同的config_preset
- 参数命名不一致:检查转换过程中是否正确处理了参数名前缀
- 模型结构差异:确认是否添加了额外的预测头
预测结果异常
如果预测得到的蛋白质结构异常,可能原因包括:
- 优化器配置问题:手动优化模式可能需要特殊处理
- 模型参数损坏:检查转换过程是否正确
- 输入特征处理不当:确保输入数据预处理一致
最佳实践建议
- 训练和预测使用相同的模型配置
- 转换后验证模型参数完整性
- 保留原始ckpt文件以便重新转换
- 对转换后的模型进行简单测试
通过以上步骤,用户可以顺利将训练得到的ckpt模型转换为可用于预测的格式,并应用于实际的蛋白质结构预测任务中。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.31 K
暂无简介
Dart
622
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
263
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
794
77