Blockscout项目中的Rollups交易批次监控功能实现
背景介绍
Blockscout作为一款开源的区块链浏览器,其健康监控功能对于运维至关重要。在Rollups技术日益普及的背景下,实现对交易批次的监控成为了提升系统可靠性的关键需求。
功能设计
Blockscout团队设计了一个扩展的健康监控端点,用于实时跟踪Rollups交易批次的同步状态。该功能主要包含两个核心模块:
- 区块实时索引监控模块
- 交易批次实时索引监控模块
技术实现细节
健康监控端点响应结构
新的健康监控端点响应采用了分层结构设计:
{
"metadata": {
"blocks": {
"latest_block": {
"cache": {
"timestamp": "2025-02-13 13:48:19.000000Z",
"number": "131927861"
},
"db": {
"timestamp": "2025-02-13 13:48:25.000000Z",
"number": "131927864"
}
},
"healthy": true
},
"batches": {
"latest_batch": {
"timestamp": "2025-02-13 13:48:19.000000Z",
"number": "100500"
},
"healthy": false
}
},
"healthy": false
}
各Rollups链实现方案
针对不同的Rollups解决方案,Blockscout团队实现了特定的监控函数:
Arbitrum实现
在Explorer.Chain.Arbitrum.Reader.Common模块中新增了get_latest_batch_info/1函数,该函数能够:
- 获取最新批次号
- 记录最新批次提交到父链的时间戳
- 计算最近10个批次的平均间隔时间
ZkSync实现
在Explorer.Chain.ZkSync.Reader模块中实现了类似功能,但针对ZkSync的特性进行了适配。
Optimism实现
Optimism的实现位于Explorer.Chain.Optimism.FrameSequence模块,主要特点包括:
- 查询最近100个已准备好的批次
- 计算批次间的平均时间间隔
- 确保至少有两个批次时才返回有效数据
Polygon zkEVM实现
在Explorer.Chain.PolygonZkevm.Reader模块中实现了针对zkEVM的监控功能,特别关注已完成的批次。
Scroll实现
Scroll的实现位于Explorer.Chain.Scroll.Reader模块,主要监控已提交的批次信息。
Prometheus指标设计
为了实现更细粒度的监控,Blockscout还设计了Prometheus指标,包括:
- 区块/批次编号
- 区块/批次时间戳
- 批次间的平均时间间隔
这些指标通过修改各Rollups链的批次导入代码位置来实现数据采集。
技术挑战与解决方案
在实现过程中,团队遇到了几个技术挑战:
-
批次时间计算准确性:最初的计算逻辑存在缺陷,可能导致不准确的平均时间计算。通过优化枚举和列表处理逻辑解决了这个问题。
-
多链适配:不同Rollups链的批次存储结构各异。通过为每种链类型设计特定的查询函数来应对这一挑战。
-
性能考量:监控查询不能影响主业务流程。通过合理设置查询限制(如只查询最近100个批次)来平衡监控需求和性能。
总结
Blockscout通过实现Rollups交易批次监控功能,显著提升了系统对Layer2解决方案的监控能力。这一改进不仅增强了运维团队对系统健康状态的把控,也为后续的性能优化提供了数据基础。该功能的实现展示了Blockscout团队对区块链技术发展趋势的敏锐把握和快速响应能力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00