Swift OpenAPI Generator 中的响应类型解析问题解析
2025-07-10 10:13:45作者:俞予舒Fleming
背景介绍
在 Swift OpenAPI Generator 项目中,开发者遇到了一个关于 API 响应类型解析的有趣问题。当服务器返回一个包含详细信息的 JSON 响应时,客户端代码却将其解析为一个更简单的结构体。这种现象揭示了 OpenAPI 规范中 oneOf 和 anyOf 关键字在实际应用中的行为差异。
问题现象
开发者定义了两个响应结构体:
CreateTranscriptionResponseJson- 仅包含转录文本的简单结构CreateTranscriptionResponseVerboseJson- 包含语言、时长、单词时间戳等详细信息的复杂结构
尽管服务器返回的是详细响应,但客户端总是将其解析为简单结构。这是因为简单结构是详细结构的子集,而解码器会按顺序尝试解析每个可能的类型。
技术分析
OpenAPI 的组合关键字
OpenAPI 规范提供了几种组合模式的关键字:
oneOf- 响应必须精确匹配其中一个模式anyOf- 响应可以匹配一个或多个模式allOf- 响应必须匹配所有指定的模式
在默认实现中,解码器会按顺序尝试每个可能的模式,直到找到第一个能够成功解码的类型。这就是为什么子集结构会被优先匹配的原因。
解码器的工作机制
Swift OpenAPI Generator 生成的解码代码大致如下:
public init(from decoder: any Decoder) throws {
var errors: [any Error] = []
do {
value1 = try .init(from: decoder)
} catch {
errors.append(error)
}
do {
value2 = try .init(from: decoder)
} catch {
errors.append(error)
}
// 验证至少有一个模式匹配成功
try Swift.DecodingError.verifyAtLeastOneSchemaIsNotNil(
[value1, value2],
type: Self.self,
codingPath: decoder.codingPath,
errors: errors
)
}
这种实现意味着解码顺序会影响结果,特别是当一种类型是另一种类型的子集时。
解决方案
开发者最终发现并解决了两个关键问题:
- 类型定义问题:API 规范中将数值类型错误地定义为字符串类型,导致详细结构的解码失败
- 顺序问题:在
anyOf或oneOf中,将更具体的类型放在前面可以提高匹配成功率
最佳实践建议
- 精确的类型定义:确保 API 规范中所有字段的类型定义准确无误
- 合理的组合顺序:在
anyOf或oneOf中,将更具体、更复杂的类型放在前面 - 考虑使用 discriminator:虽然在这个案例中不适用,但在有明确类型标识的情况下,discriminator 可以提供更可靠的类型区分
- 测试验证:编写单元测试验证各种响应情况下的解析行为
总结
这个案例展示了 API 客户端代码生成中类型解析的微妙之处。理解 OpenAPI 的组合关键字和解码器的工作机制,对于设计可靠的 API 接口和客户端代码至关重要。通过精确的类型定义和合理的结构设计,可以避免这类解析歧义问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
349
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758