Swift OpenAPI Generator 中的响应类型解析问题解析
2025-07-10 01:51:55作者:俞予舒Fleming
背景介绍
在 Swift OpenAPI Generator 项目中,开发者遇到了一个关于 API 响应类型解析的有趣问题。当服务器返回一个包含详细信息的 JSON 响应时,客户端代码却将其解析为一个更简单的结构体。这种现象揭示了 OpenAPI 规范中 oneOf 和 anyOf 关键字在实际应用中的行为差异。
问题现象
开发者定义了两个响应结构体:
CreateTranscriptionResponseJson- 仅包含转录文本的简单结构CreateTranscriptionResponseVerboseJson- 包含语言、时长、单词时间戳等详细信息的复杂结构
尽管服务器返回的是详细响应,但客户端总是将其解析为简单结构。这是因为简单结构是详细结构的子集,而解码器会按顺序尝试解析每个可能的类型。
技术分析
OpenAPI 的组合关键字
OpenAPI 规范提供了几种组合模式的关键字:
oneOf- 响应必须精确匹配其中一个模式anyOf- 响应可以匹配一个或多个模式allOf- 响应必须匹配所有指定的模式
在默认实现中,解码器会按顺序尝试每个可能的模式,直到找到第一个能够成功解码的类型。这就是为什么子集结构会被优先匹配的原因。
解码器的工作机制
Swift OpenAPI Generator 生成的解码代码大致如下:
public init(from decoder: any Decoder) throws {
var errors: [any Error] = []
do {
value1 = try .init(from: decoder)
} catch {
errors.append(error)
}
do {
value2 = try .init(from: decoder)
} catch {
errors.append(error)
}
// 验证至少有一个模式匹配成功
try Swift.DecodingError.verifyAtLeastOneSchemaIsNotNil(
[value1, value2],
type: Self.self,
codingPath: decoder.codingPath,
errors: errors
)
}
这种实现意味着解码顺序会影响结果,特别是当一种类型是另一种类型的子集时。
解决方案
开发者最终发现并解决了两个关键问题:
- 类型定义问题:API 规范中将数值类型错误地定义为字符串类型,导致详细结构的解码失败
- 顺序问题:在
anyOf或oneOf中,将更具体的类型放在前面可以提高匹配成功率
最佳实践建议
- 精确的类型定义:确保 API 规范中所有字段的类型定义准确无误
- 合理的组合顺序:在
anyOf或oneOf中,将更具体、更复杂的类型放在前面 - 考虑使用 discriminator:虽然在这个案例中不适用,但在有明确类型标识的情况下,discriminator 可以提供更可靠的类型区分
- 测试验证:编写单元测试验证各种响应情况下的解析行为
总结
这个案例展示了 API 客户端代码生成中类型解析的微妙之处。理解 OpenAPI 的组合关键字和解码器的工作机制,对于设计可靠的 API 接口和客户端代码至关重要。通过精确的类型定义和合理的结构设计,可以避免这类解析歧义问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19