ntopng项目中实现TCP探测尝试告警机制的技术解析
背景与需求分析
在现代网络监测和安全防护领域,识别潜在的非正常探测行为是网络安全防御的重要一环。ntopng作为一款开源的网络流量分析工具,需要能够及时检测并告警TCP探测行为。TCP探测通常表现为不完整的TCP三次握手或建立连接后无实际数据传输的短生命周期连接,这些行为往往是网络检查或服务探测的前兆。
技术实现方案
核心检测逻辑设计
ntopng将通过以下两个关键条件来识别TCP探测行为:
-
未完成三次握手的TCP连接:当检测到TCP连接尝试但未完成标准的三次握手过程时,系统将判定为可疑探测行为。
-
无数据传输的短生命周期连接:对于成功建立的TCP连接,如果在连接建立后的5秒内没有任何客户端到服务器的数据传输且连接被关闭,同样会被标记为探测行为。
代码架构设计
实现这一功能需要在ntopng项目中新增三个核心组件:
-
FlowRiskProbingAttempt告警类:位于flow_alerts目录下,负责定义探测尝试告警的具体属性和行为。
-
FlowRiskProbingAttempt风险检测类:位于flow_risks目录下,实现核心检测逻辑,在流量结束时评估是否符合探测行为的条件。
-
Lua告警定义脚本:位于scripts/lua/modules/alert_definitions/flow目录下,定义告警的元数据和展示方式。
核心检测代码实现
风险检测模块的核心逻辑如下:
if((protocol == IPPROTO_TCP) && (!isThreeWayHandshakeOK())) {
setRisk(ndpi_flow_risk_bitmap | NDPI_PROBING_ATTEMPT);
}
这段代码首先检查协议是否为TCP,然后验证三次握手是否未完成,如果条件满足,则设置相应的风险位图标记。
技术细节与优化考虑
-
时间窗口优化:对于第二种探测行为(无数据传输的短连接),5秒的时间窗口是一个可配置的参数,未来可以考虑根据实际网络环境动态调整。
-
误报率控制:某些合法应用也可能产生类似的连接模式,系统应考虑添加白名单机制或基于历史行为的基线学习来降低误报。
-
性能考量:由于需要在每个TCP流结束时进行评估,实现时应注意内存和CPU开销的优化,避免影响整体流量处理性能。
应用场景与价值
这一功能的实现将为网络管理员提供以下价值:
-
早期异常检测:在网络活动的侦察阶段就能发现非正常行为,为防御争取宝贵时间。
-
网络态势感知:帮助管理员了解网络中存在的检查和探测活动,评估网络安全状况。
-
合规性支持:满足某些行业安全标准中对异常连接监测的要求。
未来扩展方向
-
与其他安全事件关联:将探测告警与其他安全事件关联分析,提高异常检测的准确性。
-
机器学习增强:引入机器学习算法,自动识别正常业务流量与可疑探测行为的差异。
-
响应自动化:与防火墙等设备联动,实现探测行为的自动处理。
通过实现这一TCP探测尝试告警机制,ntopng将增强其在网络安全监测方面的能力,为用户提供更全面的网络异常可见性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









