UniAD项目模型评估结果差异分析与解决方案
背景介绍
UniAD是一个基于Transformer的端到端自动驾驶感知与预测框架,它整合了多任务学习能力,包括目标检测、轨迹预测和占用流预测等关键功能。在自动驾驶领域,模型的评估指标对于衡量系统性能至关重要,其中L2距离和碰撞率是评估预测准确性和安全性的核心指标。
问题发现
在使用UniAD项目进行模型评估时,研究人员发现加载不同版本的预训练模型uniad_base_e2e.pth
会得到显著不同的评估结果。初始加载的模型版本产生了以下不符合预期的评估结果:
-
L2距离指标:
- 1秒预测:2.9128
- 2秒预测:15.1740
- 3秒预测:35.4346
-
碰撞率指标:
- 1秒预测:0.03%
- 2秒预测:3.87%
- 3秒预测:6.84%
这些结果与论文中报告的性能指标存在明显差距,论文中报告的指标为:
-
L2距离指标:
- 1秒预测:0.48
- 2秒预测:0.96
- 3秒预测:1.65
-
碰撞率指标:
- 1秒预测:0.05%
- 2秒预测:0.17%
- 3秒预测:0.71%
问题分析
通过深入分析,发现导致评估结果差异的主要原因包括:
-
模型版本不一致:初始使用的预训练模型可能不是最新版本或完整版本,导致性能指标下降。
-
权重加载问题:日志中显示"unexpected key in source state_dict",表明模型权重加载过程中存在不匹配的情况,这会影响模型的最终性能表现。
-
评估设置差异:不同版本的模型可能对应不同的评估参数配置,包括输入分辨率、数据增强策略等。
解决方案
经过排查,研究人员通过以下步骤解决了该问题:
-
获取最新模型:从官方渠道重新下载最新版本的
uniad_base_e2e.pth
预训练模型。 -
完整加载检查:确保模型权重完全匹配,没有出现加载警告或错误。
-
重新评估验证:使用相同评估流程对新模型进行测试。
验证结果
使用最新模型后,评估结果与论文报告指标一致,验证了解决方案的有效性:
+-------------+--------+--------+--------+--------+--------+--------+
| metrics | 0.5s | 1.0s | 1.5s | 2.0s | 2.5s | 3.0s |
+-------------+--------+--------+--------+--------+--------+--------+
| obj_col | 0.0000 | 0.0000 | 0.0003 | 0.0003 | 0.0007 | 0.0010 |
| obj_box_col | 0.0003 | 0.0012 | 0.0013 | 0.0015 | 0.0030 | 0.0060 |
| L2 | 0.3356 | 0.5075 | 0.7208 | 0.9843 | 1.2930 | 1.6530 |
+-------------+--------+--------+--------+--------+--------+--------+
经验总结
-
模型版本管理:在使用预训练模型时,务必确认使用的是官方推荐的最新版本。
-
加载过程监控:需要仔细检查模型加载日志,确保没有出现权重不匹配的警告信息。
-
评估一致性:保持评估环境、参数设置与论文实验条件一致,才能获得可比较的结果。
-
性能基准验证:当评估结果与预期不符时,应首先验证模型完整性,再排查其他潜在问题。
技术启示
这一案例展示了在深度学习项目实践中模型版本控制的重要性。对于自动驾驶这类安全关键应用,微小的模型差异可能导致性能指标的显著变化。研究人员和开发者应当建立严格的模型管理流程,包括:
- 明确的版本标记系统
- 详细的变更日志记录
- 标准化的评估流程
- 结果可复现性验证机制
通过规范化的开发实践,可以避免类似问题的发生,确保研究成果的可靠性和可复现性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0362Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









