在Lida项目中实现交互式Plotly图表的技术解析
背景介绍
Lida是一个由微软开发的数据可视化项目,它能够根据自然语言描述自动生成数据可视化图表。在默认情况下,Lida生成的Plotly图表会被导出为PNG静态图片,这限制了用户与图表进行交互的能力。
问题分析
在Lida项目的使用过程中,开发者发现生成的Plotly图表默认以静态PNG格式输出,无法实现Plotly原本提供的丰富交互功能,如缩放、悬停查看数据点详情、图例切换等。这大大降低了数据探索和分析的效率。
技术解决方案
要实现交互式Plotly图表,开发者需要绕过Lida默认的PNG导出流程,直接执行生成的Python代码并获取Plotly图表对象。以下是实现这一目标的关键步骤:
-
获取图表生成代码:首先通过Lida的visualize方法获取图表生成的Python代码
-
准备数据环境:创建一个包含必要数据的环境字典,确保代码执行时能够访问到所需数据
-
执行图表代码:使用Python的exec函数执行生成的图表代码
-
获取图表对象:从执行环境中提取Plotly图表对象
-
自定义图表样式:根据需要进一步定制图表样式,如设置颜色方案等
实现示例
# 使用Lida生成图表代码
library = "plotly"
charts = lida.visualize(
summary=summary,
goal=str(goals[i]) + " use px.colors.qualitative.Plotly as color palette",
textgen_config=textgen_config,
library=library
)
# 准备数据
data = pd.read_csv("../utils/temp_dataframe.csv")
ex_locals = executor.get_globals_dict(charts[0].code, data)
# 执行图表生成代码
exec(charts[0].code, ex_locals)
# 获取图表对象
chart = ex_locals["chart"]
fig = ex_locals['plot'](data)
# 自定义图表样式
fig.update_layout(colorway=px.colors.qualitative.Plotly)
技术要点
-
环境隔离:使用exec_locals字典来隔离执行环境,避免污染全局命名空间
-
数据准备:确保在执行图表代码前,数据已经正确加载并可用
-
样式定制:通过Plotly的update_layout方法可以灵活调整图表的各种视觉属性
-
交互功能保留:这种方法生成的图表保留了Plotly原生的所有交互功能
应用场景
这种技术方案特别适用于以下场景:
-
数据探索:需要频繁与图表交互来发现数据中的模式和异常值
-
演示展示:在报告或演示中需要动态展示数据的不同方面
-
仪表板开发:作为交互式仪表板的基础组件
注意事项
-
确保使用的Python环境已安装所有必要的依赖项
-
对于大型数据集,交互式图表可能会有性能考虑
-
在生产环境中使用时,需要考虑适当的安全措施,特别是在动态执行代码时
通过这种技术方案,开发者可以充分利用Plotly强大的交互功能,同时仍然受益于Lida自动生成可视化代码的便利性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00