NVIDIA开源GPU内核模块中follow_pfn函数移除的技术分析
背景介绍
在Linux内核6.9版本及后续6.10合并窗口中,内核开发团队移除了follow_pfn()函数,这一变更影响了NVIDIA开源GPU内核模块的构建过程。该函数原本用于通过虚拟内存区域(VMA)和地址获取物理页帧号(PFN),是内存管理子系统的重要组成部分。
技术变更详情
Linux内核提交cb10c28ac82c9b7a5e9b3b1dc7157036c20c36dd移除了follow_pfn()函数,转而推荐使用更安全的follow_pte()函数组合。这一变更属于内核内存管理子系统的重构工作,目的是提供更精细的内存访问控制和更好的安全性。
对NVIDIA驱动的影响
NVIDIA开源GPU内核模块中的os-mlock.c文件使用了被移除的follow_pfn()函数,导致在6.9+内核上构建时出现编译错误。错误信息显示为隐式函数声明错误,因为内核头文件中已不再包含该函数的声明。
解决方案
NVIDIA开发团队提供了临时解决方案,建议用户修改os-mlock.c文件中的nv_follow_pfn()函数实现。修改后的版本使用follow_pte()函数组合来替代原有的follow_pfn()调用:
- 首先检查虚拟内存区域的标志位,确认是否为IO或PFN映射区域
- 使用
follow_pte()获取页表项(PTE)和自旋锁 - 通过
pte_pfn()从PTE中提取物理页帧号 - 最后释放页表映射和锁
需要注意的是,follow_pte()的第一个参数应为vma->vm_mm(内存管理结构),而不是直接的VMA结构。
兼容性考虑
这一变更主要影响开发中的内核版本(如6.10合并窗口),稳定版本内核用户通常不会遇到此问题。NVIDIA官方建议用户在稳定内核版本上使用其驱动,对于开发内核版本,用户可以自行应用补丁或等待官方更新。
技术原理深入
follow_pfn()函数的移除反映了Linux内核内存管理子系统向更精细控制方向的演进。新的follow_pte()方法提供了对页表项的直接访问,使开发者能够实现更复杂的内存管理逻辑,同时也增强了安全性,因为它明确要求处理页表锁。
这种变更也体现了内核开发中"显式优于隐式"的设计哲学,要求驱动开发者更清楚地表达他们的内存访问意图,而不是依赖旧函数提供的抽象层。
总结
内核API的变更是Linux开发的常态,NVIDIA开源GPU内核模块需要不断适应这些变化。对于开发者而言,理解这些变更背后的设计理念和技术细节,有助于更好地维护和开发内核模块。目前,用户可以通过手动修改代码或等待官方更新来解决这一兼容性问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00