NVIDIA开源GPU内核模块中follow_pfn函数移除的技术分析
背景介绍
在Linux内核6.9版本及后续6.10合并窗口中,内核开发团队移除了follow_pfn()
函数,这一变更影响了NVIDIA开源GPU内核模块的构建过程。该函数原本用于通过虚拟内存区域(VMA)和地址获取物理页帧号(PFN),是内存管理子系统的重要组成部分。
技术变更详情
Linux内核提交cb10c28ac82c9b7a5e9b3b1dc7157036c20c36dd移除了follow_pfn()
函数,转而推荐使用更安全的follow_pte()
函数组合。这一变更属于内核内存管理子系统的重构工作,目的是提供更精细的内存访问控制和更好的安全性。
对NVIDIA驱动的影响
NVIDIA开源GPU内核模块中的os-mlock.c
文件使用了被移除的follow_pfn()
函数,导致在6.9+内核上构建时出现编译错误。错误信息显示为隐式函数声明错误,因为内核头文件中已不再包含该函数的声明。
解决方案
NVIDIA开发团队提供了临时解决方案,建议用户修改os-mlock.c
文件中的nv_follow_pfn()
函数实现。修改后的版本使用follow_pte()
函数组合来替代原有的follow_pfn()
调用:
- 首先检查虚拟内存区域的标志位,确认是否为IO或PFN映射区域
- 使用
follow_pte()
获取页表项(PTE)和自旋锁 - 通过
pte_pfn()
从PTE中提取物理页帧号 - 最后释放页表映射和锁
需要注意的是,follow_pte()
的第一个参数应为vma->vm_mm
(内存管理结构),而不是直接的VMA结构。
兼容性考虑
这一变更主要影响开发中的内核版本(如6.10合并窗口),稳定版本内核用户通常不会遇到此问题。NVIDIA官方建议用户在稳定内核版本上使用其驱动,对于开发内核版本,用户可以自行应用补丁或等待官方更新。
技术原理深入
follow_pfn()
函数的移除反映了Linux内核内存管理子系统向更精细控制方向的演进。新的follow_pte()
方法提供了对页表项的直接访问,使开发者能够实现更复杂的内存管理逻辑,同时也增强了安全性,因为它明确要求处理页表锁。
这种变更也体现了内核开发中"显式优于隐式"的设计哲学,要求驱动开发者更清楚地表达他们的内存访问意图,而不是依赖旧函数提供的抽象层。
总结
内核API的变更是Linux开发的常态,NVIDIA开源GPU内核模块需要不断适应这些变化。对于开发者而言,理解这些变更背后的设计理念和技术细节,有助于更好地维护和开发内核模块。目前,用户可以通过手动修改代码或等待官方更新来解决这一兼容性问题。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









