Milvus向量数据库版本升级性能对比:2.4.14与2.5.4的写入性能分析
2025-05-04 08:12:58作者:明树来
背景介绍
Milvus作为一款高性能的开源向量数据库,在2.5版本中引入了基于主键排序的新特性以优化查询性能。然而,这一改进也带来了写入性能的变化。本文将通过实际测试数据,对比分析Milvus 2.4.14与2.5.4版本在向量写入性能上的差异。
测试环境配置
测试采用Kubernetes集群部署Milvus,主要配置如下:
-
硬件环境:
- CPU:Intel Xeon E5-2698 v4 @ 2.20GHz (80核)
- 内存:100GB
- GPU:NVIDIA V100
-
软件版本:
- Milvus对比版本:2.4.14-gpu vs 2.5.4-gpu
- 消息队列:Kafka
- SDK版本:2.5.4
-
集群配置:
- DataNode资源限制:6核CPU
- 测试数据集:50,000个向量
性能测试结果
在相同硬件配置下,两个版本表现出显著性能差异:
-
50k向量写入测试:
- 2.5.4版本:
- 平均写入时间:48.45秒
- 吞吐量:约8.07MB/s
- 2.4.14版本:
- 平均写入时间:27.10秒
- 吞吐量:约14.42MB/s
- 2.5.4版本:
-
百万级向量扩展测试(2048维):
- 2.4.14版本:
- 吞吐量:51MB/s
- 总写入时间:150秒
- 2.5.4版本:
- 吞吐量:21MB/s
- 总写入时间:367秒
- 2.4.14版本:
性能差异分析
造成性能差异的主要原因在于2.5版本引入的主键排序机制。这一优化虽然提升了查询效率,但增加了写入过程中的计算开销:
-
排序开销:
- 2.5版本在写入流程中增加了对主键的排序操作
- 排序过程需要额外的CPU计算资源
-
资源利用特点:
- 测试显示,增加DataNode的CPU资源分配会放大版本间的性能差异
- 在6核CPU配置下,2.5版本比2.4版本慢约1.8倍
-
集群扩展性:
- 2.5版本对DataNode数量的敏感性更高
- 增加DataNode数量可以部分缓解性能下降
生产环境建议
针对不同使用场景,建议采取以下优化策略:
-
查询密集型场景:
- 推荐使用2.5版本,利用其排序优化提升查询性能
- 适当增加DataNode数量(建议5个以上)平衡写入性能
-
写入密集型场景:
- 若查询性能要求不高,可考虑保留2.4版本
- 或为2.5版本配置更多计算资源
-
资源配置建议:
- DataNode CPU分配建议不低于3核
- 考虑使用更高性能的存储后端
- 监控Kafka消息队列的吞吐量瓶颈
总结
Milvus 2.5版本通过主键排序机制显著提升了查询效率,但这是以写入性能为代价的。在实际应用中,用户需要根据自身业务特点(查询vs写入的比重)选择合适的版本。对于需要升级到2.5版本的用户,建议通过增加DataNode数量和合理分配计算资源来缓解写入性能下降的问题。后续版本中,Milvus团队可能会进一步优化排序算法,减少其对写入性能的影响。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
194
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
271
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.7 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143