MISP项目中REST搜索的Warninglist机制解析
现象描述
在MISP项目(v2.5.9版本)中使用REST API进行属性搜索时,当设置enforceWarninglist参数为true时,某些明显不在任何警告列表中的属性(如randomattribute.nl)会被意外地从搜索结果中排除。而当该参数设为false时,这些属性又能正常返回。
技术背景
MISP(Malware Information Sharing Platform)是一个开源的威胁情报平台,其REST搜索API中的enforceWarninglist参数用于控制是否强制应用警告列表过滤。警告列表是MISP中用于标记已知无害或误报的指标集合,如常见的域名后缀、公共DNS服务器等。
问题分析
经过深入排查,发现该问题实际上并非真正的功能缺陷,而是由于以下原因导致:
-
分页机制影响:当搜索结果数据量较大时,MISP会自动进行分页处理。初始的CURL请求可能只获取了第一页结果,而目标属性恰好不在第一页中。
-
参数完整性:原始请求中没有包含分页相关参数(如
limit和page),导致无法获取完整的结果集。 -
验证方法:当使用值搜索(
valueSearch)或关闭警告列表强制时,由于查询条件变化或结果集缩小,目标属性出现在首屏结果中,造成了"问题解决"的错觉。
解决方案
要正确使用MISP的REST搜索功能并避免类似问题,建议:
-
完整遍历分页:对于可能返回大量结果的查询,应当循环获取所有分页数据。
-
明确分页参数:在请求中显式指定
limit和page参数,控制返回结果的数量和页码。 -
结果验证:使用
includeWarninglistHits参数确认属性是否真的匹配了任何警告列表。 -
性能考量:对于大数据集查询,考虑使用异步任务或导出功能,而非直接通过REST API获取。
最佳实践
# 示例:带分页处理的完整查询
page=1
while true; do
response=$(curl --insecure \
--header "Authorization: API_KEY" \
--header "Accept: application/json" \
--header "Content-Type: application/json" \
--request POST \
--data '{
"returnFormat": "json",
"type": ["domain","hostname"],
"tags": "Malware",
"to_ids": true,
"includeContext": true,
"enforceWarninglist": true,
"includeWarninglistHits": true,
"page": '$page',
"limit": 100
}' \
https://MISP_SERVER/attributes/restSearch)
# 处理当前页结果
echo "$response" | jq .
# 检查是否还有更多结果
if [ $(echo "$response" | jq 'length') -lt 100 ]; then
break
fi
page=$((page+1))
done
总结
MISP的警告列表机制本身工作正常,但在实际使用REST API时需要注意分页处理等细节。开发者在集成MISP API时应当充分考虑结果集大小和分页逻辑,确保获取完整数据。同时,利用includeWarninglistHits参数可以帮助验证警告列表匹配情况,避免误判功能问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00