XTuner 学习率调度器配置问题解析
2025-06-13 18:47:13作者:毕习沙Eudora
问题背景
在XTuner项目进行多轮次训练时,发现学习率调度器未能按预期工作。具体表现为当训练超过1个epoch时,余弦学习率调度器在第一个epoch结束后就停止了调整。这个问题源于学习率调度器中end参数配置不当。
技术分析
XTuner默认使用基于迭代的训练循环(TrainLoop),其max_epochs参数始终设置为1。然而在实际多轮次训练场景中,正确的end参数值应为max_epochs * epoch_length。当前配置导致学习率调度器过早结束调整。
问题表现
当配置文件中设置max_epochs=3时,可以观察到:
- 第一个epoch期间学习率按预期调整
- 后续epoch中学习率保持不变,不再进行调整
- 训练日志显示学习率曲线在第一个epoch后变为水平线
解决方案
正确的配置方式应该是将余弦学习率调度器的T_max参数改为end参数,并设置为max_epochs值。修改示例如下:
param_scheduler = [
dict(
type=LinearLR,
start_factor=1e-5,
by_epoch=True,
begin=0,
end=warmup_ratio * max_epochs,
convert_to_iter_based=True),
dict(
type=CosineAnnealingLR,
eta_min=0.0,
by_epoch=True,
begin=warmup_ratio * max_epochs,
end=max_epochs, # 修改此处
convert_to_iter_based=True)
]
影响范围
此问题影响所有使用多轮次训练的场景,特别是:
- 使用余弦退火学习率调度器的配置
- 训练轮次大于1的情况
- 依赖学习率动态调整效果的微调任务
最佳实践建议
- 在多轮次训练配置中,显式设置
end参数而非T_max - 训练前检查学习率调度器的配置是否正确
- 训练过程中监控学习率变化曲线,确保符合预期
- 对于自定义训练配置,注意参数名称的统一性
总结
学习率调度是深度学习训练中的关键环节,正确的配置能显著影响模型性能。XTuner项目中这一配置问题的修复,确保了学习率在多轮次训练中能够按预期进行调整,为模型训练提供了更可靠的优化过程。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136