zooshi 的安装和配置教程
项目基础介绍
zooshi 是一个开源游戏项目,玩家在游戏中乘坐木筏顺流而下,向穿着体面的动物顾客投掷寿司。该项目旨在展示如何使用来自 Google 的 Fun Propulsion Labs 开发的一系列开源游戏技术构建跨平台游戏。
主要编程语言
zooshi 主要使用 C++ 编程语言,同时也包含 Python、CMake、Makefile、Shell 和 GLSL 等其他语言元素。
关键技术和框架
项目使用的关键技术和框架包括但不限于以下几种:
- Breadboard
 - CORGI
 - FlatBuffers
 - FlatUI
 - fplbase
 - fplutil
 - Motive
 - Pindrop
 - Scene Lab
 - WebP
 - Google Cardboard API
 
准备工作
在开始安装 zooshi 之前,请确保您的系统中已经安装以下依赖项和工具:
- Git 版本控制系统
 - CMake 构建系统
 - 与项目兼容的编译器(如 GCC 或 Clang)
 - 可能还需要 Java Development Kit (JDK) 用于 Android 构建环境
 - Android Studio(如果您打算在 Android 设备上运行游戏)
 
安装步骤
以下是详细的 zooshi 安装步骤:
步骤 1:克隆项目
首先,您需要从 GitHub 克隆 zooshi 项目到本地机器上。打开命令行终端,执行以下命令:
git clone --recursive https://github.com/google/zooshi.git
步骤 2:安装依赖
zooshi 使用 Git 子模块引用其他依赖组件。确保在克隆过程中使用了 --recursive 选项,以自动初始化并更新所有子模块。
如果未能正确初始化子模块,您可以手动执行以下命令:
cd zooshi
git submodule update --init --recursive
步骤 3:构建项目
在克隆和初始化所有子模块之后,您需要使用 CMake 来构建项目。
创建一个新的构建目录,并切换到该目录:
mkdir build && cd build
然后运行 CMake 来生成构建系统文件:
cmake ..
最后,使用 make 命令来编译项目:
make
步骤 4:运行项目
编译完成后,您可以在相应平台上运行 zooshi。具体的运行命令可能会根据平台和构建系统有所不同。通常,您可以在项目的根目录或构建目录中找到可执行文件,然后直接运行它。
在 Linux 或 macOS 上,运行可执行文件的命令可能如下:
./zooshi
在 Windows 上,如果您使用的是 Visual Studio,可能需要从 Visual Studio 中启动项目。
请注意,具体的运行步骤可能需要根据项目的文档和您的开发环境进行调整。
以上就是 zooshi 的安装和配置指南。请按照上述步骤操作,并根据需要参考项目文档来解决可能出现的问题。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00