Apache Parquet-MR 使用指南
2026-01-19 10:25:40作者:盛欣凯Ernestine
Apache Parquet-MR 是一个基于Java实现的Apache Parquet列式存储格式库。Parquet是一种高效的数据存储格式,专为Hadoop生态系统设计,支持高效的数据压缩和编码方式,尤其适合处理大规模数据集。通过其独特的记录拆分与组装算法(源自Dremel论文),它能够优雅地管理嵌套数据结构。
项目介绍
Apache Parquet-MR 提供了对Parquet格式的完整支持,包括读写功能,且在多个大数据处理框架中广泛使用,如Apache Hive、Spark等。该库利用Maven构建,并依赖Thrift编译器进行协议缓冲区的处理(注:现在可通过Maven插件自动管理protoc)。Parquet的设计目标在于优化I/O性能,特别是在处理宽表和大规模数据扫描时。
项目快速启动
要快速开始使用Apache Parquet-MR,首先确保你的开发环境已经安装了JDK和Maven。以下是一个简单的示例,演示如何创建一个基本的Parquet文件:
# 如果尚未安装Thrift,可以参考项目说明安装对应的版本。
# 创建一个新的Maven项目,并在pom.xml中添加Parquet-MR的依赖
<!-- 在您的pom.xml中加入以下依赖 -->
<dependencies>
<dependency>
<groupId>org.apache.parquet</groupId>
<artifactId>parquet-mr</artifactId>
<!-- 使用最新的稳定版,例如 -->
<version>1.14.1</version>
</dependency>
</dependencies>
# 编写Java代码来创建一个Parquet文件
import org.apache.parquet.example.data.Group;
import org.apache.parquet.example.data.simple.SimpleGroupFactory;
import org.apache.parquet.hadoop.ParquetWriter;
import org.apache.parquet.hadoop.util.HadoopOutputFile;
import org.apache.hadoop.fs.Path;
public class QuickStart {
public static void main(String[] args) throws Exception {
Group g = new SimpleGroupFactory().newRecordBuilder()
.addGroup("message").addString("content", "Hello, Parquet!")
.build();
try (ParquetWriter<Group> writer = new ParquetWriter<>(new Path("output.parquet"),
new SimpleGroupWriteSupport()));
{
writer.write(g);
}
}
}
运行上述Java程序后,会在当前目录下生成名为output.parquet的Parquet文件。
应用案例和最佳实践
Parquet因其高效的列式存储特性,在大数据分析领域被广泛应用。一个典型的应用场景是在Apache Spark上构建数据分析管道,其中Parquet用来作为中间结果或最终数据的存储格式,因为它能显著减少数据加载和处理时间。
最佳实践:
- 列式存储: 利用Parquet的列式存储特性,只读取所需列,提高查询效率。
- 数据压缩: 选择适合数据特性的压缩算法,比如GZIP或LZ4,以平衡压缩比和解压速度。
- 数据编码: 使用最优的数据编码策略,提升存储空间效率。
- 批处理写入: 批量写入数据到Parquet文件中,减少IO操作次数,提高写入效率。
典型生态项目
Apache Parquet因其高效性,已成为许多大数据处理框架的核心组件,以下是几个典型的生态系统项目:
- Apache Hive - 支持将表数据存储为Parquet格式,大幅提高查询性能。
- Apache Spark - 广泛使用Parquet作为数据源和目标格式,利于分布式计算中的数据交换。
- Flink - 类似于Spark,Flink也集成Parquet,提供高性能的数据处理能力。
- Impala - Impala可以直接查询存储为Parquet格式的数据,提供接近实时的分析能力。
通过这些生态系统项目,开发者可以无缝地在不同的大数据处理框架中运用Parquet,实现高效的批量处理和交互式查询。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134