DB-GPT项目中的多轮对话历史功能实现解析
2026-02-04 04:56:57作者:殷蕙予
概述
在DB-GPT项目中,simple_chat_history_example.py文件展示了一个基于AWEL框架实现的多轮对话历史功能。这个功能允许系统在对话过程中记住上下文信息,使AI能够基于之前的对话内容进行回应,从而提供更加连贯和智能的交互体验。
核心功能解析
1. 多轮对话机制
该实现通过conv_uid(会话唯一标识符)来跟踪和管理对话历史。每次用户发起请求时,如果使用相同的conv_uid,系统会自动关联之前的对话内容,形成上下文感知的回应。
2. 两种响应模式
- 非流式响应:一次性返回完整的回答,适用于不需要实时显示的场景
- 流式响应:以数据流的形式逐步返回回答,适用于需要实时显示的场景
3. 对话历史管理
系统会保留最近5轮对话内容(通过keep_end_rounds=5参数设置),既保证了上下文连贯性,又避免了历史信息过多导致的性能问题。
技术实现细节
请求处理流程
- HTTP触发器:
HttpTrigger接收POST请求,解析请求体 - 请求预处理:
req_handle_task将原始请求转换为内部格式 - 对话历史组合:
composer_operator结合历史消息和当前输入生成完整提示 - 分支处理:根据
stream参数决定使用流式或非流式处理 - 结果返回:将处理结果转换为标准格式返回给客户端
关键组件
- ChatPromptTemplate:定义了对话模板结构,包括系统提示、历史消息占位符和用户输入
- InMemoryStorage:用于临时存储对话历史(生产环境可能需要替换为持久化存储)
- LLMBranchOperator:根据流式/非流式需求路由到不同的处理分支
- OpenAIStreamingOutputOperator:将流式响应转换为OpenAI兼容格式
使用示例
非流式对话
# 第一轮对话
curl -X POST http://127.0.0.1:5555/api/v1/awel/trigger/examples/simple_history/multi_round/chat/completions \
-H "Content-Type: application/json" -d '{
"model": "gpt-3.5-turbo",
"context": {
"conv_uid": "uuid_conv_1234"
},
"messages": "Who is elon musk?"
}'
# 第二轮对话(使用相同的conv_uid)
curl -X POST http://127.0.0.1:5555/api/v1/awel/trigger/examples/simple_history/multi_round/chat/completions \
-H "Content-Type: application/json" -d '{
"model": "gpt-3.5-turbo",
"context": {
"conv_uid": "uuid_conv_1234"
},
"messages": "Is he rich?"
}'
流式对话
# 流式对话示例
curl -X POST http://127.0.0.1:5555/api/v1/awel/trigger/examples/simple_history/multi_round/chat/completions \
-H "Content-Type: application/json" -d '{
"model": "gpt-3.5-turbo",
"context": {
"conv_uid": "uuid_conv_stream_1234"
},
"stream": true,
"messages": "Who is elon musk?"
}'
开发与生产模式
- 开发模式:可以直接运行脚本进行本地调试,默认端口5555
- 生产模式:DB-GPT启动时会自动加载并执行该文件,无需手动干预
扩展思考
- 存储优化:当前使用内存存储,生产环境可考虑替换为Redis或数据库存储
- 历史策略:可根据场景调整
keep_end_rounds参数,平衡上下文记忆和性能 - 安全考虑:实际部署时应增加身份验证和请求验证机制
这个实现展示了DB-GPT项目中如何利用AWEL框架构建复杂的对话系统,为开发者提供了灵活、可扩展的多轮对话解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
终极Emoji表情配置指南:从config.yaml到一键部署全流程如何用Aider AI助手快速开发游戏:从Pong到2048的完整指南从崩溃到重生:Anki参数重置功能深度优化方案 RuoYi-Cloud-Plus 微服务通用权限管理系统技术文档 GoldenLayout 布局配置完全指南 Tencent Cloud IM Server SDK Java 技术文档 解决JumpServer v4.10.1版本Windows发布机部署失败问题 最完整2025版!SeedVR2模型家族(3B/7B)选型与性能优化指南2025微信机器人新范式:从消息自动回复到智能助理的进化之路3分钟搞定!团子翻译器接入Gemini模型超详细指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350