Dawarich项目处理大型Google Takeout JSON文件导入的技术方案
2025-06-14 13:24:04作者:伍希望
在Dawarich项目中,用户经常需要导入从Google Takeout导出的位置历史数据(Records.json文件)。当这些JSON文件体积较大时(通常超过1GB),直接导入会遇到内存不足导致进程被终止的问题。本文将深入分析问题根源并提供多种有效的解决方案。
问题根源分析
当尝试导入大型Records.json文件时,系统会显示"Killed"错误并终止进程。这主要是由于:
- Ruby on Rails应用默认会尝试将整个JSON文件加载到内存中进行解析
- 处理海量位置数据时需要消耗大量内存资源
- 默认配置下的容器资源限制可能不足
解决方案一:手动分割JSON文件
最直接的解决方案是将大型JSON文件分割成多个小文件分批导入。以下是使用jq工具的分割脚本示例:
#!/bin/bash
input_file="Records.json"
output_prefix="smaller_array"
chunk_size=100000
total_elements=$(jq '.locations | length' $input_file)
for ((i=0; i<total_elements; i+=chunk_size)); do
start_index=$i
end_index=$(($i + $chunk_size - 1))
output_file="${output_prefix}_$(($i / $chunk_size + 1)).json"
jq "{locations: .locations[$start_index:$end_index + 1]}" $input_file > $output_file
done
分割完成后,可以批量导入分割后的文件:
for f in tmp/imports/*.json; do
bundle exec rake import:big_file["${f}",'your@email.com'];
done
解决方案二:使用流式处理(推荐)
更优雅的解决方案是使用流式JSON处理器,这样可以避免将整个文件加载到内存中。以下是使用Node.js和JSONStream的实现示例:
const fs = require('fs');
const JSONStream = require('JSONStream');
let chunk = 0;
let locations = {0: []};
let chunkSize = 100000;
let processed = 0;
let readStream = fs.createReadStream("./Records.json");
let stream = readStream.pipe(JSONStream.parse("locations.*"));
stream.on("data", l => {
processed++;
if(locations[chunk].length < chunkSize) {
return locations[chunk].push(l);
}
fs.promises.writeFile(`${chunk}_Records.json`,
JSON.stringify({locations: locations[chunk]}))
.then(() => { delete locations[chunk] });
chunk++;
locations[chunk] = [l];
});
stream.on("end", () => {
if(locations[chunk].length > 0) {
fs.promises.writeFile(`${chunk}_Records.json`,
JSON.stringify({locations: locations[chunk]}))
.then(() => console.log("处理完成"));
} else {
console.log("处理完成");
}
});
性能优化建议
- 增加Sidekiq工作线程:在docker-compose.yml中调整BACKGROUND_PROCESSING_CONCURRENCY参数,建议设置为50-100
- 资源分配:确保Docker容器有足够的内存(至少8GB)和CPU资源
- 批量处理:导入完成后,系统会自动去重,不必担心重复导入问题
未来改进方向
Dawarich项目团队计划在未来版本中实现以下改进:
- 自动检测大文件并分割处理
- 内置流式JSON解析器
- 更友好的进度提示和错误处理
通过以上方法,用户可以成功导入大型位置历史数据集,充分利用Dawarich项目的所有功能。对于技术小白用户,建议从手动分割方案开始,逐步尝试更高级的流式处理方案。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133