Akephalos 项目技术文档
1. 安装指南
安装 Akephalos
Akephalos 是一个基于 HtmlUnit 的无头浏览器,用于 Capybara 的集成测试。它可以在 JRuby 和 MRI 上运行,无需系统上安装 JRuby。
要安装 Akephalos,只需在终端中运行以下命令:
gem install akephalos
2. 项目的使用说明
配置 Akephalos
配置 Akephalos 非常简单,只需在代码中引入它,并设置 Capybara 的 JavaScript 驱动器:
require 'akephalos'
Capybara.javascript_driver = :akephalos
基本用法
Akephalos 为 Capybara 提供了一个驱动器,因此使用 Akephalos 与使用 Selenium 或 Rack::Test 没有区别。你可以参考 Capybara 的 DSL 文档来了解完整的用法。Akephalos 不依赖于特定的测试框架,可以与 RSpec、Cucumber 和 Test::Unit 一起使用。
以下是一个使用 RSpec 的示例代码:
describe "Home Page" do
before { visit "/" }
context "searching" do
before do
fill_in "Search", :with => "akephalos"
click_button "Go"
end
it "returns results" { page.should have_css("#results") }
it "includes the search term" { page.should have_content("akephalos") }
end
end
3. 项目API使用文档
配置选项
Akephalos 提供了一些通过 Capybara 的 register_driver API 进行配置的选项。
使用不同的浏览器
HtmlUnit 支持多种浏览器实现,你可以通过 Akephalos 选择你想要使用的浏览器。默认情况下,Akephalos 使用 Firefox 3.6。
Capybara.register_driver :akephalos do |app|
# 可用选项:
# :ie6, :ie7, :ie8, :firefox_3, :firefox_3_6
Capybara::Driver::Akephalos.new(app, :browser => :ie8)
end
忽略 JavaScript 错误
默认情况下,HtmlUnit(和 Akephalos)会在遇到 JavaScript 错误时抛出异常。通常这是可取的,但某些库可能不受 HtmlUnit 支持。如果可能,最好保持默认行为,并使用过滤器(Filters)来模拟有问题的库。如果需要,你可以配置 Akephalos 忽略 JavaScript 错误。
Capybara.register_driver :akephalos do |app|
Capybara::Driver::Akephalos.new(app, :validate_scripts => false)
end
4. 项目安装方式
安装 Akephalos
Akephalos 的安装非常简单,只需在终端中运行以下命令:
gem install akephalos
安装完成后,你可以在项目中引入 Akephalos,并配置 Capybara 的 JavaScript 驱动器。
配置 Akephalos
在项目中配置 Akephalos 的步骤如下:
-
引入 Akephalos:
require 'akephalos' -
设置 Capybara 的 JavaScript 驱动器:
Capybara.javascript_driver = :akephalos
通过以上步骤,你就可以在项目中使用 Akephalos 进行集成测试了。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00