Akephalos 项目技术文档
1. 安装指南
安装 Akephalos
Akephalos 是一个基于 HtmlUnit 的无头浏览器,用于 Capybara 的集成测试。它可以在 JRuby 和 MRI 上运行,无需系统上安装 JRuby。
要安装 Akephalos,只需在终端中运行以下命令:
gem install akephalos
2. 项目的使用说明
配置 Akephalos
配置 Akephalos 非常简单,只需在代码中引入它,并设置 Capybara 的 JavaScript 驱动器:
require 'akephalos'
Capybara.javascript_driver = :akephalos
基本用法
Akephalos 为 Capybara 提供了一个驱动器,因此使用 Akephalos 与使用 Selenium 或 Rack::Test 没有区别。你可以参考 Capybara 的 DSL 文档来了解完整的用法。Akephalos 不依赖于特定的测试框架,可以与 RSpec、Cucumber 和 Test::Unit 一起使用。
以下是一个使用 RSpec 的示例代码:
describe "Home Page" do
before { visit "/" }
context "searching" do
before do
fill_in "Search", :with => "akephalos"
click_button "Go"
end
it "returns results" { page.should have_css("#results") }
it "includes the search term" { page.should have_content("akephalos") }
end
end
3. 项目API使用文档
配置选项
Akephalos 提供了一些通过 Capybara 的 register_driver API 进行配置的选项。
使用不同的浏览器
HtmlUnit 支持多种浏览器实现,你可以通过 Akephalos 选择你想要使用的浏览器。默认情况下,Akephalos 使用 Firefox 3.6。
Capybara.register_driver :akephalos do |app|
# 可用选项:
# :ie6, :ie7, :ie8, :firefox_3, :firefox_3_6
Capybara::Driver::Akephalos.new(app, :browser => :ie8)
end
忽略 JavaScript 错误
默认情况下,HtmlUnit(和 Akephalos)会在遇到 JavaScript 错误时抛出异常。通常这是可取的,但某些库可能不受 HtmlUnit 支持。如果可能,最好保持默认行为,并使用过滤器(Filters)来模拟有问题的库。如果需要,你可以配置 Akephalos 忽略 JavaScript 错误。
Capybara.register_driver :akephalos do |app|
Capybara::Driver::Akephalos.new(app, :validate_scripts => false)
end
4. 项目安装方式
安装 Akephalos
Akephalos 的安装非常简单,只需在终端中运行以下命令:
gem install akephalos
安装完成后,你可以在项目中引入 Akephalos,并配置 Capybara 的 JavaScript 驱动器。
配置 Akephalos
在项目中配置 Akephalos 的步骤如下:
-
引入 Akephalos:
require 'akephalos' -
设置 Capybara 的 JavaScript 驱动器:
Capybara.javascript_driver = :akephalos
通过以上步骤,你就可以在项目中使用 Akephalos 进行集成测试了。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00