PyMuPDF-Utilities 项目使用教程
2025-04-17 12:51:45作者:余洋婵Anita
1. 项目目录结构及介绍
PyMuPDF-Utilities 项目是一个包含多个示例和实用工具的集合,用于演示如何使用 PyMuPDF 库来创建和处理 PDF、XPS 和电子书。项目的目录结构如下:
PyMuPDF-Utilities/
├── OCR/ # OCR 相关示例
├── advanced-toc/ # 高级目录处理示例
├── animations/ # 动画处理示例
├── annotations/ # 注解处理示例
├── cloud-interactions/ # 云交互示例
├── conversion/ # 转换示例
├── examples/ # 示例集合
├── fields/ # 字段处理示例
├── font-replacement/ # 字体替换示例
├── jupyter-notebooks/ # Jupyter 笔记本示例
├── optional-content/ # 可选内容处理示例
├── pdf-names-resolution/ # PDF 名称解析示例
├── reporting/ # 报告生成示例
├── shapes/ # 形状处理示例
├── table-analysis/ # 表格分析示例
├── text-documents/ # 文本文档处理示例
├── text-extraction/ # 文本提取示例
├── textbox-extraction/ # 文本框提取示例
├── textwriter/ # 文本写入示例
├── word&line-marking/ # 字词和线条标记示例
├── alias-changer.py # 别名更改脚本
├── LICENSE # 项目许可证
├── README.md # 项目说明文件
每个目录下都包含了相关的 Python 脚本和文档,用于展示如何使用 PyMuPDF 进行特定的任务。
2. 项目的启动文件介绍
在 PyMuPDF-Utilities 项目中,并没有一个单一的“启动文件”。用户可以根据自己的需要选择任意一个示例脚本来运行。例如,如果你想尝试 OCR 功能,可以运行 OCR 目录下的任意一个脚本。以下是一个简单的示例:
# 假设我们使用 Tesseract OCR 来处理一个 PDF 文件
import fitz # PyMuPDF 的主模块
import pytesseract # Tesseract 的 Python 接口
# 打开 PDF 文件
doc = fitz.open("example.pdf")
# 选择第一个页面进行 OCR 处理
page = doc[0]
text = pytesseract.image_to_string(page.get_pixmap())
print(text)
# 关闭文档
doc.close()
这是一个基础的脚本,用于演示如何结合 PyMuPDF 和 Tesseract OCR 来处理 PDF 文件。
3. 项目的配置文件介绍
PyMuPDF-Utilities 项目并没有一个专门的配置文件。每个示例脚本通常会包含必要的配置参数,例如输入文件名、输出文件名等。如果需要,用户可以直接在脚本中修改这些参数来满足自己的需求。
对于需要环境变量或更复杂配置的情况,用户可以创建一个配置文件(如 config.py),然后在脚本中导入并使用这些配置。
下面是一个简单的配置文件示例:
# config.py
input_pdf = "example.pdf"
output_text = "output.txt"
ocr_engine = "tesseract" # 可以是 'tesseract' 或 'easyocr'
然后在你的脚本中导入并使用这个配置:
# 导入配置
from config import input_pdf, output_text, ocr_engine
# 使用配置
# ...
这样,你就可以在不修改脚本主体的情况下,通过更改配置文件来调整脚本的行为。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218