JohnTheRipper项目中的OpenCL内联函数优化实践
2025-05-21 20:05:24作者:宣利权Counsellor
背景介绍
在JohnTheRipper密码分析工具的开发过程中,OpenCL内核代码的性能优化一直是一个重要课题。其中,函数内联(inline)的使用策略对性能有着直接影响。项目组近期对OpenCL内核中的内联函数声明方式进行了深入讨论和优化调整。
原有实现的问题
项目中原有的实现通过宏重定义了inline关键字,这种方式存在几个明显问题:
- 代码可读性差:在函数定义处无法直观看出
inline可能被宏修改 - 潜在语法问题:可能导致
static static inline这样的冗余声明 - 兼容性问题:不同OpenCL运行时对
inline的处理方式不一致
原有实现根据不同运行环境进行了条件定义:
#if __MESA__
#define inline // 空定义
#elif __POCL__
// 不做修改
#elif gpu_amd(DEVICE_INFO) // 针对ROCM
#define inline static inline
#else
// 默认不做修改
#endif
优化方案
经过讨论和测试,项目组决定采用更清晰、更标准的实现方式:
- 定义明确的宏代替直接重定义
inline关键字 - 提供显式的内联和非内联控制
- 保持与现有代码的兼容性
最终确定的宏定义为:
#define INLINE static inline
#define NOINLINE __attribute__((noinline))
技术验证
项目组成员进行了详细的性能验证:
- PTX汇编对比:在NVIDIA平台上测试,修改前后生成的PTX汇编代码完全相同
- 二进制大小比较:内核二进制大小没有变化
- 功能测试:所有格式测试通过,无回归问题
这些验证表明,优化后的实现保持了原有的性能特性,同时提高了代码的可维护性。
最佳实践建议
基于项目经验,对于OpenCL内核函数的内联声明,推荐以下实践:
- 优先使用
static inline组合,这是最标准和可移植的方式 - 对于明确不需要内联的函数,可使用
__attribute__((noinline))提示编译器 - 避免直接重定义语言关键字,应使用项目特定的宏
- 关键性能路径上的小函数适合内联,复杂函数可考虑非内联
未来方向
项目组计划进一步研究:
- 不同OpenCL运行时对内联策略的实际影响
- 内联声明对特定格式(如ed25519)的性能影响
- 自动检测和优化内联策略的工具支持
这些优化工作体现了JohnTheRipper项目对代码质量和性能的不懈追求,也为其他GPU计算项目提供了有价值的参考经验。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217