Sandboxed Module 技术文档
1. 安装指南
要安装 sandboxed-module,请在终端中运行以下命令:
npm install sandboxed-module
2. 项目的使用说明
sandboxed-module 是一个用于依赖注入的 Node.js 模块加载器。它允许你在模块中注入依赖项,主要用于单元测试。以下是一个简单的使用示例:
var SandboxedModule = require('sandboxed-module');
var user = SandboxedModule.require('./user', {
requires: {'mysql': {fake: 'mysql module'}},
globals: {myGlobal: 'variable'},
locals: {myLocal: 'other variable'},
});
在这个示例中,sandboxed-module 加载了 ./user 模块,并注入了 mysql 模块的假实现,以及一些全局和局部变量。
3. 项目API使用文档
SandboxedModule.load(moduleId, [options])
返回一个新的 SandboxedModule,其中 moduleId 是通常传递给 require() 的模块路径或 ID。该模块将在其自己的 v8 上下文中加载,但可以访问正常的 Node.js 环境。
options 是一个可选对象,用于注入以下内容:
requires:一个对象,包含moduleId和要注入的值,当沙盒模块需要它们时。globals:一个对象,包含要注入到沙盒模块中的全局变量。locals:一个对象,包含要注入到沙盒模块中的局部变量。sourceTransformers:一个对象,包含命名的函数,用于转换沙盒模块的源代码。singleOnly:如果为 false,沙盒模块所需的模块将不会被沙盒化。默认情况下,所有沙盒模块所需的模块都将使用相同的选项进行沙盒化。sourceTransformersSingleOnly:如果为 false,源转换器将不会对沙盒模块所需的模块运行。默认情况下,它将采用与singleOnly相同的值。
SandboxedModule.require(moduleId, [options])
与 SandboxedModule.load() 相同,但直接返回 sandboxedModule.exports。
SandboxedModule.configure(options)
在所有 SandboxedModule.load() 和 SandboxedModule.require() 使用中全局设置选项。
SandboxedModule.registerBuiltInSourceTransformer(name)
启用内置的源转换器。目前,SandboxedModule 有两个内置源转换器:
"coffee"- 使用 CoffeeScript 编译源代码。"istanbul"- 当 istanbul 代码覆盖运行时,通过 istanbul 进行源代码插桩。
sandboxedModule.filename
模块的完整路径。
sandboxedModule.module
底层的 Node.js Module 实例。
sandboxedModule.exports
返回 sandboxedModule.module.exports 对象的 getter。
sandboxedModule.globals
该模块加载的 v8 上下文的全局对象。对该对象的修改将反映在沙盒模块中。
sandboxedModule.locals
使用闭包注入到沙盒模块中的局部变量。修改此对象不会影响沙盒的状态。
sandboxedModule.required
一个对象,包含沙盒模块本身所需的所有模块的列表。键是用于 require 调用的 moduleId。
sandboxedModule.sourceTransformers
一个命名的函数对象,用于转换通过 SandboxedModule.require 所需的源代码。
4. 项目安装方式
sandboxed-module 可以通过 npm 安装,安装命令如下:
npm install sandboxed-module
安装完成后,你可以在项目中通过 require('sandboxed-module') 来使用它。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00