T-POTCE项目中Logstash与OpenSearch集成的技术实践
2025-05-29 03:15:50作者:鲍丁臣Ursa
背景与需求场景
在网络安全监控领域,T-POTCE作为一款基于Docker的威胁感知平台,默认采用Elastic Stack(ELK)作为数据分析后端。随着OpenSearch(亚马逊开源的Elasticsearch分支)的成熟,部分用户希望将数据存储迁移至OpenSearch以获取完全开源的机器学习与安全功能。这一需求的核心在于解决Logstash与OpenSearch的对接问题。
技术挑战分析
用户提出的具体技术场景是:在T-POTCE的Logstash容器中安装logstash-output-opensearch插件后,由于Docker容器的无状态特性,每次容器重启都会导致插件丢失。这反映了两个关键技术点:
- 容器化应用的持久化需求:Docker容器默认不保存运行时修改,需要特殊机制保持插件安装状态
- 技术栈兼容性:OpenSearch作为Elasticsearch的分支,其API协议需要特定插件支持
解决方案详解
方案一:定制Docker镜像(不推荐)
虽然用户建议在构建时安装插件,但官方团队指出这会导致:
- 构建时间延长(尤其影响ARM架构镜像)
- 增加基础镜像的维护复杂度
- 对不需要OpenSearch的用户造成资源浪费
方案二:持久化存储方案(推荐)
更优雅的解决方案是通过Docker卷实现插件持久化:
- 创建专用数据卷:
docker volume create logstash-plugins - 运行时挂载插件目录:
docker run -v logstash-plugins:/usr/share/logstash/plugins ... - 初始化脚本方案:
通过entrypoint脚本检测插件是否存在,若不存在则自动安装:
#!/bin/sh if [ ! -f "/usr/share/logstash/plugins/logstash-output-opensearch" ]; then /usr/share/logstash/bin/logstash-plugin install logstash-output-opensearch fi exec "$@"
配置调整指南
完成插件安装后,需修改Logstash配置文件:
output {
opensearch {
hosts => ["https://opensearch-node:9200"]
index => "tpot-%{+YYYY.MM.dd}"
user => "admin"
password => "secure_password"
ssl => true
ssl_certificate_verification => false # 测试环境可关闭证书验证
}
}
架构思考
该方案体现了云原生环境下的重要设计原则:
- 关注点分离:保持基础镜像的纯净性,通过挂载机制实现定制化
- 不可变基础设施:通过卷挂载而非直接修改容器来实现持久化
- 弹性扩展:同样的机制可用于其他插件管理场景
注意事项
- 生产环境应配置OpenSearch的TLS证书验证
- 建议监控插件与Logstash核心版本的兼容性
- 多节点部署时需要确保所有实例的插件一致性
通过这种方案,用户既能享受OpenSearch的开源优势,又能保持T-POTCE系统的稳定性和可维护性。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136