探索计算机视觉的通用追踪框架: UniTrack
2024-05-20 12:16:12作者:柯茵沙
在计算机视觉领域,目标跟踪一直是一项基础而至关重要的任务。然而,随着研究的深入,各种特定的任务设置和解决方案如雨后春笋般涌现,造成了方法的碎片化。面对这一挑战,我们很荣幸向您推荐[NeurIPS 2021]的创新成果——UniTrack,一个简单且统一的框架,用于处理多重跟踪任务。
项目介绍
UniTrack是一个不需要针对特定跟踪任务进行训练的一站式解决方案。它在同一架构下,成功地对五个主要任务(单对象跟踪SOT、视频对象分割VOS、多对象跟踪MOT、多对象跟踪与分割MOTS以及姿态跟踪PoseTrack)进行了处理,展现出极具竞争力的性能。不仅如此,这个框架还能够轻松适应更多任务,并作为评估平台测试预训练的自监督模型。
项目技术分析
外观模型是整个系统的关键组成部分。无论是基于ImageNet预训练的ResNet(有监督),还是像MoCo和SimCLR这样的最新自我监督模型,其目的是提供一种通用的视觉表示。通过这种外观模型, UniTrack实现了跨任务的普适性。
传播与关联是实现跟踪的核心算法。利用预先学习到的特征,"传播"采用现有的方法如交叉相关、DCF或掩模传播来更新目标状态,而"关联"则使用简单的算法或新颖的重建相似度度量,使不同形状和大小的对象之间可以进行比较。
应用场景
- 智能监控: 在商业场所或公共空间中实时监测多人的行为和动向。
- 自动驾驶: 车载摄像头通过追踪其他车辆和行人来增强安全驾驶。
- 体育分析: 追踪运动员的动作以进行运动分析和训练优化。
- 医学影像分析: 对医疗图像中的病变进行持续跟踪,辅助诊断。
项目特点
- 通用性强:无需为每个任务单独训练,一个模型通吃多个任务。
- 高性能:在七个跟踪任务上表现出色,与专业方法相媲美。
- 易于扩展:设计灵活,可轻松添加新的任务。
- 开放源码:全代码开源,方便科研人员和开发者进行二次开发和应用实践。
使用UniTrack的步骤
- 安装: 参照docs/INSTALL.md进行环境配置。
- 数据准备: 查看docs/DATA.md获取数据集准备指南。
- 准备外观模型: 可参考docs/MODELZOO.md选用合适的预训练模型。
- 开始运行: 详细教程在docs/RUN.md中,包括各个任务的评估。
为了更直观地体验 UniTrack 的强大功能,请尝试提供的Demo,其中包括针对COCO 80类别的多对象跟踪演示和自定义视频的单对象跟踪演示。
总的来说, UniTrack 是一种创新的跟踪框架,不仅简化了复杂任务的解决过程,而且提供了高效的性能。无论您是研究人员,还是希望在实际应用中集成跟踪功能的开发者,UniTrack 都值得您探索和使用。立即加入我们,一同推进计算机视觉的边界!
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193