如何使用Apache Airavata Django Portal构建科学网关
引言
随着科研工作的深入发展,对于一个功能全面、易于使用并能迅速搭建的科学网关需求日益增加。Apache Airavata Django Portal,作为Apache Airavata API的Web界面实现,提供了一个强大而灵活的平台,不仅支持即时使用,还允许通过各种插件进行定制,以满足特定领域的需要。本文将介绍如何快速搭建和使用Apache Airavata Django Portal,展示其作为科学网关的潜力。
主体
环境搭建与配置
环境配置要求
Apache Airavata Django Portal主要使用Python和Django框架,同时需要JavaScript和Node.js来构建前端代码。以下是具体的环境配置要求:
- Python 3.6 - 3.10版本。
- Node.js 19版本,如果安装了nvm,可以通过nvm安装并切换版本。
- 对于macOS用户,需安装MySQL开发头文件和库,以及openssl。
所需工具和数据
为了顺利搭建环境,需要准备以下工具:
- git命令行工具用于克隆项目。
- pip和virtualenv用于创建Python虚拟环境。
模型使用步骤
第一步:环境搭建
首先,克隆项目并创建虚拟环境:
git clone ***
***
***
***
***
对于Windows系统,使用 venv\Scripts\activate 命令代替 source 命令。
第二步:本地配置
接下来,创建本地设置文件 settings_local.py。可以通过现有的Airavata Django Portal实例下载,或从 settings_local.py.sample 复制并修改。
第三步:运行Django迁移
执行Django迁移,以建立所需的数据库结构:
python manage.py migrate
第四步:构建JavaScript资源
运行 build_js.sh 脚本,构建源目录中的JavaScript资源。
第五步:加载Wagtail CMS页面
python manage.py load_cms_data new_default_theme
第六步:运行服务器
启动服务器:
python manage.py runserver
并将浏览器指向 ***。
结果分析
完成上述步骤后,你将拥有一个配置好的科学网关,可以根据具体任务配置进一步的模型和工具。结果分析方面,文档中提到的输出结果解读和性能评估指标将提供关键反馈。
结论
Apache Airavata Django Portal凭借其灵活性和强大的API支持,在快速搭建科学网关领域中表现出了极大的优势。本文介绍的方法和步骤,能够帮助科研人员和开发者迅速上手并定制满足特定需求的科学网关。未来,通过不断优化和添加新功能,Apache Airavata Django Portal有望成为科学网关的首选平台。
请记住,如果您需要进一步的帮助或想要报告任何问题,可以通过发送邮件到 <***>,或者在Airavata Jira项目中提出您的问题和建议。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00