FastDeploy中OCRResult结构体字段缺失问题解析
问题背景
在FastDeploy项目的1.0.7版本中,vision模块的OCRResult结构体在C++头文件中定义了多个字段,包括表格识别相关的table_boxes和table_structure等字段。然而,在Python绑定(pybind11)部分却遗漏了这些字段的导出,导致Python开发者无法直接访问这些重要的表格识别结果。
技术细节分析
OCRResult结构体在C++层面设计得相当完善,包含了以下关键字段:
-
基础OCR字段:
boxes: 存储检测框坐标的二维数组text: 识别出的文本内容rec_scores: 识别置信度分数cls_scores和cls_labels: 分类相关分数和标签
-
表格识别专用字段:
table_boxes: 表格检测框坐标table_structure: 表格结构信息table_html: 表格HTML表示形式
然而,在Python绑定实现中,只导出了基础OCR字段,遗漏了表格识别相关的三个重要字段。这种不一致性会导致以下问题:
- Python开发者无法获取完整的表格识别结果
- 表格识别功能在Python端无法完整使用
- 跨语言功能不一致,影响开发体验
解决方案探讨
针对这一问题,技术团队可以考虑以下几种解决方案:
-
直接补充绑定字段: 最简单的解决方案是在pybind11绑定代码中添加缺失的三个表格识别字段。这种方法改动最小,能快速解决问题。
-
派生专用结果类: 更面向对象的做法是创建一个新的
TableOCRResult类,继承自OCRResult,专门处理表格识别相关字段。这种设计更符合单一职责原则,但需要更多重构工作。 -
版本兼容性考虑: 在添加新字段时,需要考虑向后兼容性,确保老版本代码不会因为新字段而出现问题。
技术实现建议
如果采用第一种直接补充字段的方案,pybind11绑定代码应修改为:
pybind11::class_<vision::OCRResult>(m, "OCRResult")
.def(pybind11::init())
.def_readwrite("boxes", &vision::OCRResult::boxes)
.def_readwrite("text", &vision::OCRResult::text)
.def_readwrite("rec_scores", &vision::OCRResult::rec_scores)
.def_readwrite("cls_scores", &vision::OCRResult::cls_scores)
.def_readwrite("cls_labels", &vision::OCRResult::cls_labels)
.def_readwrite("table_boxes", &vision::OCRResult::table_boxes)
.def_readwrite("table_structure", &vision::OCRResult::table_structure)
.def_readwrite("table_html", &vision::OCRResult::table_html)
.def("__repr__", &vision::OCRResult::Str)
.def("__str__", &vision::OCRResult::Str);
总结
FastDeploy作为一款高效的推理部署工具,其OCR功能在实际业务场景中应用广泛。表格识别作为OCR的重要应用场景,其功能完整性直接影响用户体验。通过修复这一字段导出问题,可以确保Python开发者能够充分利用FastDeploy的完整表格识别能力,提升开发效率和用户体验。
技术团队已确认将在未来版本中解决这一问题,开发者可以关注后续版本更新。对于急需使用表格识别功能的开发者,目前可以考虑通过C++接口获取完整结果,或等待官方修复后的版本发布。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00