探秘Scale-equalizing Pyramid Convolution:开启对象检测新里程
在计算机视觉领域中,特征金字塔已成为提取多尺度信息的有效方法。然而,对不同层级间的关系却鲜有关注。Scale-equalizing Pyramid Convolution for Object Detection(CVPR2020),由Wang等人提出,引入了一种创新的金字塔卷积概念,旨在打破这一局面。
项目介绍
这个开源项目基于一项研究,该研究的核心是一种名为"Pyramid Convolution"的新型卷积操作。这种3维卷积跨越了金字塔级别的边界,直接从空间和尺度两个维度上提取特征。为了进一步优化,作者们还提出了一个叫做"Scale-equalizing Pyramid Convolution"(SEPC)的模块,它能够更好地适应高层次特征图的需求。此项目不仅适用于单阶段目标检测器,还可以作为两阶段检测器中的独立模块,为性能提升带来了显著效果。
技术分析
Pyramid Convolution是通过对传统2D卷积进行扩展,形成一种跨层级的3D卷积形式,以捕获特征金字塔中层次间的相关性。而SEPC模块则在此基础上进行了优化,通过仅在高层次特征图中对共享的金字塔卷积核进行对齐,来解决金字塔特征与高斯金字塔特性不匹配的问题。这一改进不仅提高了效率,还能与其他大多数单阶段目标检测器的头部设计兼容。
应用场景
本项目特别适用于那些需要处理不同尺度目标的场景,如自动驾驶、遥感图像分析、视频监控等领域。无论是在单阶段的目标检测框架(如RetinaNet或FreeAnchor)还是在两阶段框架中,都能展现出强大的性能提升潜力。
项目特点
- 创新性:Pyramid Convolution提供了一种全新的视角来理解特征金字塔,并解决了现有方法忽视的层次间关系问题。
- 高效性:SEPC模块的设计兼顾性能与计算效率,即使在轻量级版本下也能带来显著性能提升。
- 兼容性:模块可无缝插入到多种现有的目标检测框架中,无需复杂的代码修改。
- 强大性能:实验结果表明,在MS-COCO2017数据集上,SEPC可以提高超过4个点的平均精度(AP),对现有的先进方法有显著增强。
要开始探索,请首先安装mmdetection(版本1.1.0,搭配mmcv 0.4.3)。项目源码清晰结构化,易于理解和复现实验。提供的预训练模型可供立即验证其性能优势。
引用该项目的研究论文:
@InProceedings{Wang_2020_CVPR,
author = {Wang, Xinjiang and Zhang, Shilong and Yu, Zhuoran and Feng, Litong and Zhang, Wayne},
title = {Scale-Equalizing Pyramid Convolution for Object Detection},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}
让我们共同探索这个开创性的项目,为你的对象检测任务打开新的可能!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00