Apache APISIX中Prometheus监控数据采集接口性能问题分析与优化
问题背景
在使用Apache APISIX作为API网关时,许多用户会通过Prometheus来采集网关的监控指标数据。然而在实际生产环境中,当流量较大时,用户可能会遇到/apisix/prometheus/metrics
接口响应变慢的问题,导致Grafana监控图表出现数据波动和不稳定的情况。
问题现象分析
从实际案例中观察到的现象包括:
- 监控接口响应时间偶尔会显著增加
- Grafana展示的监控数据出现不规则的波动
- 系统日志中偶尔出现与etcd连接相关的警告信息
- 当并发连接数达到2000以上时,问题表现更为明显
根本原因探究
经过深入分析,这个问题主要由以下几个因素共同导致:
-
共享内存空间不足:APISIX默认配置中为Prometheus指标分配的共享字典(shared_dict)大小为10MB,但在高流量场景下,实际监控数据量可能达到30MB以上,远超默认配置。
-
内存淘汰机制触发:当监控数据量超过shared_dict容量限制时,系统会触发LRU(最近最少使用)淘汰机制,导致部分监控指标数据丢失,进而造成监控图表波动。
-
数据序列化开销:Prometheus指标数据需要从共享内存中读取并进行序列化处理,当数据量过大时,这个过程会消耗较多CPU资源和时间。
-
资源竞争:在高并发场景下,多个请求同时访问监控接口可能导致资源竞争,进一步加剧响应延迟。
解决方案与优化建议
1. 调整共享内存配置
最直接的解决方案是增加Prometheus插件使用的shared_dict大小。可以通过修改APISIX配置文件来实现:
http {
lua_shared_dict prometheus_metrics 50m; # 将大小从默认的10MB增加到50MB
}
调整后需要重启APISIX服务使配置生效。建议根据实际监控数据量来设置这个值,一般应为峰值数据量的1.5-2倍。
2. 优化Prometheus采集频率
如果监控数据量过大,可以考虑:
- 适当降低Prometheus的采集频率
- 精简采集的指标,只保留必要的监控项
- 使用Prometheus的metric_relabel_configs功能过滤不必要的数据
3. 监控系统资源使用
建议对APISIX节点的以下资源指标进行监控:
- 共享内存使用率
- CPU使用率
- 内存使用情况
- 网络I/O
当这些资源接近瓶颈时,及时进行扩容或优化。
4. 集群部署考虑
对于大规模生产环境,建议:
- 部署多个APISIX实例组成集群
- 使用负载均衡分散监控接口的请求压力
- 考虑使用APISIX的集群模式聚合监控数据
实施效果验证
在实施上述优化措施后,应当关注以下指标来验证优化效果:
/apisix/prometheus/metrics
接口的P99响应时间- Grafana监控图表的平滑程度
- 共享内存的使用率和淘汰次数
- 系统整体资源使用率
总结
Apache APISIX的Prometheus监控接口性能问题通常是由资源不足和配置不当引起的。通过合理调整共享内存大小、优化采集策略和加强系统监控,可以有效解决接口响应慢和监控数据波动的问题。对于高流量生产环境,建议提前进行容量规划和压力测试,确保监控系统的稳定性和可靠性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









