Apache APISIX中Prometheus监控数据采集接口性能问题分析与优化
问题背景
在使用Apache APISIX作为API网关时,许多用户会通过Prometheus来采集网关的监控指标数据。然而在实际生产环境中,当流量较大时,用户可能会遇到/apisix/prometheus/metrics接口响应变慢的问题,导致Grafana监控图表出现数据波动和不稳定的情况。
问题现象分析
从实际案例中观察到的现象包括:
- 监控接口响应时间偶尔会显著增加
- Grafana展示的监控数据出现不规则的波动
- 系统日志中偶尔出现与etcd连接相关的警告信息
- 当并发连接数达到2000以上时,问题表现更为明显
根本原因探究
经过深入分析,这个问题主要由以下几个因素共同导致:
-
共享内存空间不足:APISIX默认配置中为Prometheus指标分配的共享字典(shared_dict)大小为10MB,但在高流量场景下,实际监控数据量可能达到30MB以上,远超默认配置。
-
内存淘汰机制触发:当监控数据量超过shared_dict容量限制时,系统会触发LRU(最近最少使用)淘汰机制,导致部分监控指标数据丢失,进而造成监控图表波动。
-
数据序列化开销:Prometheus指标数据需要从共享内存中读取并进行序列化处理,当数据量过大时,这个过程会消耗较多CPU资源和时间。
-
资源竞争:在高并发场景下,多个请求同时访问监控接口可能导致资源竞争,进一步加剧响应延迟。
解决方案与优化建议
1. 调整共享内存配置
最直接的解决方案是增加Prometheus插件使用的shared_dict大小。可以通过修改APISIX配置文件来实现:
http {
lua_shared_dict prometheus_metrics 50m; # 将大小从默认的10MB增加到50MB
}
调整后需要重启APISIX服务使配置生效。建议根据实际监控数据量来设置这个值,一般应为峰值数据量的1.5-2倍。
2. 优化Prometheus采集频率
如果监控数据量过大,可以考虑:
- 适当降低Prometheus的采集频率
- 精简采集的指标,只保留必要的监控项
- 使用Prometheus的metric_relabel_configs功能过滤不必要的数据
3. 监控系统资源使用
建议对APISIX节点的以下资源指标进行监控:
- 共享内存使用率
- CPU使用率
- 内存使用情况
- 网络I/O
当这些资源接近瓶颈时,及时进行扩容或优化。
4. 集群部署考虑
对于大规模生产环境,建议:
- 部署多个APISIX实例组成集群
- 使用负载均衡分散监控接口的请求压力
- 考虑使用APISIX的集群模式聚合监控数据
实施效果验证
在实施上述优化措施后,应当关注以下指标来验证优化效果:
/apisix/prometheus/metrics接口的P99响应时间- Grafana监控图表的平滑程度
- 共享内存的使用率和淘汰次数
- 系统整体资源使用率
总结
Apache APISIX的Prometheus监控接口性能问题通常是由资源不足和配置不当引起的。通过合理调整共享内存大小、优化采集策略和加强系统监控,可以有效解决接口响应慢和监控数据波动的问题。对于高流量生产环境,建议提前进行容量规划和压力测试,确保监控系统的稳定性和可靠性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00