ZenSVI 开源项目最佳实践
2025-05-28 08:40:28作者:贡沫苏Truman
1. 项目介绍
ZenSVI 是一个全面的 Python 包,用于下载、清洗和分析街景图像。该项目由 Koichi Ito(新加坡国立大学)开发,并提供了详尽的 API 文档和使用案例。ZenSVI 支持多种数据源,包括 Mapillary、KartaView、Amsterdam 和 NUS Global Streetscapes 数据集,使得用户能够轻松地获取和处理街景图像。
2. 项目快速启动
在开始使用 ZenSVI 之前,请确保您已经安装了必要的依赖项。以下是快速启动项目的步骤:
首先,安装 ZenSVI:
pip install zensvi
接下来,根据您需要的数据源安装相应的下载器:
from zensvi.download import MLYDownloader
mly_api_key = "YOUR_OWN_MLY_API_KEY" # 请注册并获取您自己的 Mapillary API 密钥
downloader = MLYDownloader(mly_api_key=mly_api_key)
# 以下是一个使用 Mapillary 数据源的例子
downloader.download_svi("path/to/output_directory", lat=1.290270, lon=103.851959)
上述代码将会从 Mapillary 下载指定经纬度位置的街景图像到指定的输出目录。
3. 应用案例和最佳实践
下载街景图像
使用 ZenSVI,您可以轻松地从不同数据源下载街景图像。以下是一些示例:
- 从 Mapillary 下载数据:
from zensvi.download import MLYDownloader
downloader = MLYDownloader(mly_api_key="YOUR_OWN_MLY_API_KEY")
downloader.download_svi("path/to/output_directory", input_csv_file="path/to/csv_file.csv")
- 从 KartaView 下载数据:
from zensvi.download import KVDownloader
downloader = KVDownloader()
downloader.download_svi("path/to/output_directory", input_place_name="Singapore")
分析街景图像元数据
您可以使用 ZenSVI 分析图像元数据:
from zensvi.metadata import MLYMetadata
path_input = "path/to/input"
mly_metadata = MLYMetadata(path_input)
mly_metadata.compute_metadata(unit="image", indicator_list="all", path_output="path/to/output")
运行图像分割
对图像进行语义分割:
from zensvi.cv import Segmenter
segmenter = Segmenter(dataset="cityscapes", task="semantic")
segmenter.segment("path/to/input_directory", dir_image_output="path/to/image_output_directory", dir_summary_output="path/to/segmentation_summary_output")
运行场景分类
使用 Places365 进行场景分类:
from zensvi.cv import ClassifierPlaces365
classifier = ClassifierPlaces365()
classifier.classify("path/to/input_directory", dir_image_output="path/to/image_output_directory", dir_summary_output="path/to/classification_summary_output")
4. 典型生态项目
ZenSVI 作为街景图像处理工具,可以广泛应用于城市规划、交通分析、环境监测等领域。以下是一些典型的生态项目:
- 城市安全评估:使用 ZenSVI 下载街景图像,并通过图像分析评估城市不同区域的安全状况。
- 城市美化计划:通过分析街景图像,确定哪些区域需要绿化或美化,以提升城市整体形象。
- 交通流量分析:利用 ZenSVI 下载的图像,分析交通流量和车辆类型,为交通规划提供数据支持。
通过以上步骤和实践,您可以开始使用 ZenSVI 进行街景图像的下载、清洗和分析,并为各种实际应用提供支持。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
650
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
655
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216