DeepLabCut网络评估中预测图缺失问题的分析与解决
2025-06-10 14:50:16作者:宣利权Counsellor
问题现象
在使用DeepLabCut进行多动物姿态估计时,部分用户遇到了一个特殊现象:当完成网络训练并尝试评估模型时,系统虽然会创建预测结果文件夹,但该文件夹为空,没有生成预期的预测图。与此同时,测试热图却能正常显示。这一问题通常发生在用户重新训练网络并复制新视频到视频文件夹后。
问题根源
经过技术分析,发现该问题与DeepLabCut的设计机制密切相关。DeepLabCut系统不会对同一shuffle(数据混洗方式)进行多次评估。具体来说:
- 系统会通过shuffle编号和训练迭代次数来唯一标识每个训练快照
- 如果检测到某个快照的评估结果已经存在,系统将不会重复运行评估过程
- 这导致即使选择了"Plot predictions"选项,也不会生成新的预测图
解决方案
针对这一问题,我们推荐以下两种解决方案:
方案一:删除已有评估结果
- 定位到项目目录中的评估结果文件夹
- 删除与当前训练相关的历史评估数据
- 重新运行评估流程
这种方法简单直接,适用于需要保留原始训练结果的场景。
方案二:创建新shuffle训练(推荐)
- 在训练前创建新的shuffle配置
- 根据需要调整训练参数
- 使用新shuffle进行训练和评估
这种方法更为规范,具有以下优势:
- 可以保留历史训练结果用于比较
- 便于参数调优和效果对比
- 符合DeepLabCut的最佳实践
技术建议
对于DeepLabCut用户,我们建议:
- 避免对同一shuffle进行重复训练
- 每次参数调整都应创建新的shuffle
- 定期清理不再需要的评估结果
- 对于多动物项目,特别注意数据标注的完整性
总结
DeepLabCut的这一设计机制实际上是为了避免重复计算,提高效率。理解这一机制后,用户可以通过规范的操作流程避免预测图缺失问题。对于科研用户而言,采用创建新shuffle的方法不仅解决了当前问题,还能为后续的参数对比和结果分析提供便利。
当遇到类似问题时,建议首先检查是否存在重复训练的shuffle,这是DeepLabCut多动物姿态分析中常见的问题根源之一。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

暂无简介
Dart
532
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
61

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
648