DeepLabCut网络评估中预测图缺失问题的分析与解决
2025-06-10 17:00:05作者:宣利权Counsellor
问题现象
在使用DeepLabCut进行多动物姿态估计时,部分用户遇到了一个特殊现象:当完成网络训练并尝试评估模型时,系统虽然会创建预测结果文件夹,但该文件夹为空,没有生成预期的预测图。与此同时,测试热图却能正常显示。这一问题通常发生在用户重新训练网络并复制新视频到视频文件夹后。
问题根源
经过技术分析,发现该问题与DeepLabCut的设计机制密切相关。DeepLabCut系统不会对同一shuffle(数据混洗方式)进行多次评估。具体来说:
- 系统会通过shuffle编号和训练迭代次数来唯一标识每个训练快照
- 如果检测到某个快照的评估结果已经存在,系统将不会重复运行评估过程
- 这导致即使选择了"Plot predictions"选项,也不会生成新的预测图
解决方案
针对这一问题,我们推荐以下两种解决方案:
方案一:删除已有评估结果
- 定位到项目目录中的评估结果文件夹
- 删除与当前训练相关的历史评估数据
- 重新运行评估流程
这种方法简单直接,适用于需要保留原始训练结果的场景。
方案二:创建新shuffle训练(推荐)
- 在训练前创建新的shuffle配置
- 根据需要调整训练参数
- 使用新shuffle进行训练和评估
这种方法更为规范,具有以下优势:
- 可以保留历史训练结果用于比较
- 便于参数调优和效果对比
- 符合DeepLabCut的最佳实践
技术建议
对于DeepLabCut用户,我们建议:
- 避免对同一shuffle进行重复训练
- 每次参数调整都应创建新的shuffle
- 定期清理不再需要的评估结果
- 对于多动物项目,特别注意数据标注的完整性
总结
DeepLabCut的这一设计机制实际上是为了避免重复计算,提高效率。理解这一机制后,用户可以通过规范的操作流程避免预测图缺失问题。对于科研用户而言,采用创建新shuffle的方法不仅解决了当前问题,还能为后续的参数对比和结果分析提供便利。
当遇到类似问题时,建议首先检查是否存在重复训练的shuffle,这是DeepLabCut多动物姿态分析中常见的问题根源之一。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
316
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
155
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
241
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K