Candle项目中的FP16矩阵乘法优化探讨
Candle是一个基于Rust的深度学习框架,近期社区成员发现其在处理FP16精度的矩阵乘法运算时存在性能优化空间。本文将深入分析这一技术问题,并探讨解决方案。
问题背景
在深度学习推理过程中,矩阵乘法(GEMM)是最核心的计算操作之一。当使用FP16精度时,NVIDIA CUDA提供了两种计算方式:
- 使用FP16进行累加(hgemm)
- 使用FP32进行累加(sgemm)
社区成员通过性能分析工具发现,Candle当前使用的是FP32累加方式(turing_fp16_s1688gemm_fp16_256x128_ldg8_f2f_tn内核),而同类框架如llama.cpp则使用了FP16累加方式(turing_h1688gemm_256x128_ldg8_tn内核)。实测显示,后者能带来约15%的性能提升。
技术分析
精度与性能的权衡
FP16累加的优势在于:
- 更高的计算吞吐量
- 更低的内存带宽需求
- 更快的执行速度
但同时也存在:
- 累加过程中可能丢失精度
- 数值稳定性稍差
FP32累加则相反,虽然速度稍慢,但能保持更高的计算精度。
Candle的实现细节
Candle通过cudarc库调用CUDA BLAS的通用GEMM接口,默认使用CUBLAS_COMPUTE_32F计算类型。这意味着虽然输入输出都是FP16,但累加过程使用FP32精度,这与PyTorch的默认行为一致。
解决方案
经过讨论和测试,Candle项目采取了以下改进措施:
- 保留了FP32累加作为默认选项,确保大多数模型的数值稳定性
- 新增了全局标志,允许用户显式启用FP16累加模式
- 特别针对量化模型场景优化了默认配置
这种设计既照顾了通用场景的稳定性需求,又为追求极致性能的特殊场景提供了选择权。
实际效果
在Mistral.rs项目中的测试表明,启用FP16累加后:
- 推理速度提升了约15%
- 从1000 token/s提升到1150 token/s
- 在量化模型上未观察到明显的精度损失
行业实践参考
PyTorch也提供了类似的精度控制选项:
- 默认允许降低精度以获得性能
- 但可通过
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction进行配置
这一设计思路与Candle的解决方案不谋而合,体现了深度学习框架在精度与性能间寻求平衡的通用做法。
总结
Candle项目通过这次优化,展示了其灵活性和对性能的追求。对于开发者而言,理解框架底层计算细节有助于更好地调优应用性能。特别是在量化模型等对精度要求不苛刻的场景,适当降低计算精度可以带来可观的性能提升。
未来随着硬件和算法的发展,如何在各种场景下智能选择最优计算精度,仍是深度学习框架需要持续探索的方向。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00