Candle项目中的FP16矩阵乘法优化探讨
Candle是一个基于Rust的深度学习框架,近期社区成员发现其在处理FP16精度的矩阵乘法运算时存在性能优化空间。本文将深入分析这一技术问题,并探讨解决方案。
问题背景
在深度学习推理过程中,矩阵乘法(GEMM)是最核心的计算操作之一。当使用FP16精度时,NVIDIA CUDA提供了两种计算方式:
- 使用FP16进行累加(hgemm)
- 使用FP32进行累加(sgemm)
社区成员通过性能分析工具发现,Candle当前使用的是FP32累加方式(turing_fp16_s1688gemm_fp16_256x128_ldg8_f2f_tn内核),而同类框架如llama.cpp则使用了FP16累加方式(turing_h1688gemm_256x128_ldg8_tn内核)。实测显示,后者能带来约15%的性能提升。
技术分析
精度与性能的权衡
FP16累加的优势在于:
- 更高的计算吞吐量
- 更低的内存带宽需求
- 更快的执行速度
但同时也存在:
- 累加过程中可能丢失精度
- 数值稳定性稍差
FP32累加则相反,虽然速度稍慢,但能保持更高的计算精度。
Candle的实现细节
Candle通过cudarc库调用CUDA BLAS的通用GEMM接口,默认使用CUBLAS_COMPUTE_32F计算类型。这意味着虽然输入输出都是FP16,但累加过程使用FP32精度,这与PyTorch的默认行为一致。
解决方案
经过讨论和测试,Candle项目采取了以下改进措施:
- 保留了FP32累加作为默认选项,确保大多数模型的数值稳定性
- 新增了全局标志,允许用户显式启用FP16累加模式
- 特别针对量化模型场景优化了默认配置
这种设计既照顾了通用场景的稳定性需求,又为追求极致性能的特殊场景提供了选择权。
实际效果
在Mistral.rs项目中的测试表明,启用FP16累加后:
- 推理速度提升了约15%
- 从1000 token/s提升到1150 token/s
- 在量化模型上未观察到明显的精度损失
行业实践参考
PyTorch也提供了类似的精度控制选项:
- 默认允许降低精度以获得性能
- 但可通过
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction进行配置
这一设计思路与Candle的解决方案不谋而合,体现了深度学习框架在精度与性能间寻求平衡的通用做法。
总结
Candle项目通过这次优化,展示了其灵活性和对性能的追求。对于开发者而言,理解框架底层计算细节有助于更好地调优应用性能。特别是在量化模型等对精度要求不苛刻的场景,适当降低计算精度可以带来可观的性能提升。
未来随着硬件和算法的发展,如何在各种场景下智能选择最优计算精度,仍是深度学习框架需要持续探索的方向。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00