轻量级(贝叶斯)营销混合建模库:LightweightMMM
2024-05-22 14:52:37作者:尤峻淳Whitney

项目介绍
LightweightMMM 是一个 Python 库,旨在帮助组织理解和优化跨媒体渠道的市场营销支出。它采用一种不依赖于官方 Google 产品的 Bayesian 方法,以更轻量级的方式处理营销分析问题。
这个库提供了:
- 帮助理解各个媒体渠道广告效果的功能。
- 优化预算分配决策的工具。
- 针对行业经验或先前 MMM 模型集成信息的能力。
- 参数和模型不确定性报告,以及这些不确定性的预算优化传播。
通过使用 LightweightMMM,你可以:
- 估计最佳的媒体渠道预算分配。
- 理解在支出变化时媒体渠道的表现如何。
- 通过对媒体渠道进行分析来影响目标关键绩效指标(如销售额)。
项目技术分析
LightweightMMM 使用了 Numpyro 和 JAX 这两个强大的库,它们为实现高效的 Bayesian Marketing Mix Modeling 提供了基础。其主要特性包括:
- Bayesian 方法:允许结合先验信息进行建模,提供参数和模型不确定性的量化。
- 模型层次结构:支持国家层面的标准模型和地市级别的层次模型,提高模型准确性。
- 媒体饱和度和滞后效应处理:提供了三种不同的方法来捕捉媒体投入与销售之间的滞后和递减关系。
项目及技术应用场景
- 广告商可以利用 LightweightMMM 来衡量在线和线下广告的效果,不受最近隐私政策变化的影响,因为它是基于汇总数据的。
- 数据分析师可以通过该库构建灵活的非线性趋势和季节性模型,以更好地理解和预测市场动态。
- 在大企业中,特别是在具有多个子区域的大型国家,地市级别的层次模型可以提供更精确的见解。
项目特点
- 易用性:LightweightMMM 提供简单易懂的 API,使用户能够快速设置和运行 MMM 模型。
- 灵活性:支持多种模型架构,包括不同类型的媒体影响函数和滞后效应处理。
- 可扩展性:通过 Bayesian 方法整合先验知识,适应不断变化的市场条件。
- 不确定性量化:不仅报告参数估计值,还报告模型不确定性,这对于制定策略至关重要。
- 预算优化:内置功能用于评估预算分配更改对结果的影响,并帮助确定最优化策略。
开始使用
要开始使用 LightweightMMM,请按照以下步骤操作:
- 安装库:
pip install lightweight_mmm或者从 GitHub 安装最新版本。 - 准备数据:确保数据按要求清洗,包括媒体数据、额外特征、目标和成本。
- 数据预处理:使用提供的 scaler 对数据进行适当缩放。
- 训练模型:调用
LightweightMMM()并传入相关数据。
访问文档获取详细教程和示例代码。
总的来说,LightweightMMM 是一个强大而实用的工具,适合那些寻求数据驱动的营销决策和效率提升的广告商和技术团队。它的易用性和灵活性使得即使是对复杂统计模型不熟悉的用户也能轻松上手。尝试一下 LightweightMMM,体验更深入的营销洞察力吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
89
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
337
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
437
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19