FBGEMM v1.2.0:深度学习高性能计算库的重大更新
FBGEMM(Facebook通用矩阵乘法库)是Meta开源的专为深度学习工作负载优化的高性能计算库。作为PyTorch生态系统的重要组成部分,FBGEMM在推荐系统、自然语言处理等领域的嵌入表操作和矩阵计算中发挥着关键作用。最新发布的v1.2.0版本带来了多项重要改进和新特性,特别是在表嵌入操作(TBE)、生成式AI运算(GenAI)以及硬件支持方面有显著增强。
核心功能增强
表嵌入操作(TBE)的全面升级
在GPU端的TBE实现中,v1.2.0版本新增了对int64_t类型表索引和偏移量的支持,这大大扩展了处理超大规模嵌入表的能力。同时引入了Embeddings Estimator和Generator(EEG)工具,为TBE性能基准测试提供了更强大的支持。
CPU端的TBE也有显著改进,新增了Fused8BitRowwiseQuantizedSBFloatToFloatOrHalf算子,并通过SVE2指令集将FloatToFloat16转换速度提升了75倍。此外,还加入了FP32 GEMM内核,为需要高精度计算的场景提供了更多选择。
对于SSD存储方案,此版本修复了初始化时的内存溢出(OOM)问题,并对L1和L2缓存刷新机制进行了优化,提升了大规模嵌入表在持久化存储上的性能表现。
生成式AI运算的独立封装与优化
v1.2.0版本将GenAI相关运算单独封装为FBGEMM GenAI包,简化了构建和安装流程。在算法层面,这一版本带来了多项重要优化:
- 针对FP8分组GEMM的多项优化,提升了混合精度计算的效率
- 新增BF16I4预混洗分组GEMM和BF16堆叠分组GEMM实现
- F8I4分组GEMM的进一步优化,特别是针对稀疏输入的处理
- 新增nccl_alltoall集体通信函数,增强了分布式训练能力
这些改进特别适合当前大语言模型训练和推理的需求,能够显著提升生成式AI应用的性能。
硬件支持扩展
在硬件兼容性方面,v1.2.0版本增加了对CUDA 12.8的构建支持,并初步提供了ROCm开源构建对GenAI运算的支持。这意味着AMD GPU用户现在也能充分利用FBGEMM的高性能计算能力。
特别值得一提的是,新版本引入了一套CUDA内核启动工具,能够有效防范运行时错误,提高了GPU计算的稳定性和可靠性。
工程实践改进
在工程实践方面,v1.2.0版本有多项值得关注的改进:
- 构建系统优化,减少了非GenAI版本的FBGEMM_GPU构建体积
- 文档系统增强,特别是为GenAI包新增了专门文档
- 测试体系完善,增加了更多边界条件测试
- 错误处理机制强化,特别是针对数值稳定性的改进
这些改进使得FBGEMM在保持高性能的同时,更加稳定可靠,更适合生产环境部署。
性能优化亮点
除了功能性增强外,v1.2.0版本在性能优化方面也有多项突破:
- 通过调整TileShape配置,优化了大语言模型形状的处理效率
- 改进了FP8分组GEMM的内存访问模式,减少了数据传输开销
- 利用Triton编译器实现了更高效的GroupedGEMM
- 针对AMD GPU的特殊优化,提升了在MI300等硬件上的性能表现
这些优化使得FBGEMM在各种硬件平台上都能发挥出接近理论极限的计算性能。
总结
FBGEMM v1.2.0作为一次重要版本更新,在功能丰富性、性能表现和硬件支持等方面都有显著提升。特别是对生成式AI工作负载的专门优化,使其成为大语言模型训练和推理的有力工具。同时,改进的工程实践和更完善的文档体系,也大大降低了使用门槛。对于需要高性能矩阵计算和嵌入表操作的深度学习应用,升级到v1.2.0版本将带来明显的性能提升和功能增强。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00