CLIP_benchmark 开源项目指南
2024-09-27 19:41:36作者:彭桢灵Jeremy
概述
CLIP_benchmark 是一个用于评估 CLIP(Contrastive Language-Image Pre-training)及其类似模型性能的工具包。它支持在多个标准数据集上进行零样本分类(zero-shot classification)、零样本检索(zero-shot retrieval)以及图像描述等任务。项目旨在提供一个统一的标准来衡量不同模型在这类任务上的表现。
项目目录结构及介绍
以下是 CLIP_benchmark 的基础目录结构及关键文件说明:
CLIP_benchmark
├── benchmark # 包含基准测试的核心逻辑和脚本
│ ├── README.md # 测试相关的详细说明
│ └── ...
├── cli.py # 命令行接口,便于用户运行评测
├── clip_benchmark.py # 主入口文件,执行评测的主要逻辑
├── datasets # 数据集处理模块,支持多种数据源如torchvision、TensorFlow Datasets及WebDataset
├── models # 包含模型加载和转换的函数,支持OpenCLIP、日本版CLIP等
│ ├── __init__.py
│ └── open_clip.py # 示例:OpenCLIP模型的加载方法
├── notebooks # 可视化结果的Jupyter Notebook文件
├── tests # 单元测试相关文件
├── requirements.txt # 项目依赖库列表
├── setup.cfg # 配置编译设置
├── setup.py # 用于安装项目的Python脚本
└── README.md # 项目总览和快速入门指南
项目启动文件介绍
主要启动文件:cli.py 和 clip_benchmark.py
cli.py: 提供命令行交互界面,用户可以通过这个文件直接输入命令来运行模型的评测,无需编写额外代码。是用户日常使用的入口点。clip_benchmark.py: 实现了评测的核心逻辑。当通过命令行调用时,该文件会被激活来执行具体的评测任务,包括模型加载、数据处理、任务执行及结果保存等过程。
项目的配置文件介绍
虽然本项目没有明确指定一个全局的配置文件,但其灵活性体现在允许用户通过命令行参数或自定义文本文件(models.txt, webdatasets.txt)来配置评估模型和数据集。这些“配置”文件实质上是用来指示程序如何选择不同的模型、数据集和任务设置的简易方式。
- 模型配置 (
models.txt): 用户可以创建此文件来列出要评估的所有模型,每行一个模型名称或路径。 - 数据集配置 (
webdatasets.txt): 列出所有要使用的数据集,这在执行基于Webdataset的任务时特别有用。
示例配置操作
- 用户可以创建
models.txt指定模型列表,例如:ViT-B-32 openai. - 对于数据集,通过下载提供的
webdatasets.txt或者自行构建,以指引程序获取正确数据。
在实际使用中,模型和数据集的选择、任务类型(如零样本分类、检索等)、以及其他特定设置,主要是通过命令行参数动态配置的。
以上是对 CLIP_benchmark 项目的基本结构和核心组件的概述。通过理解和运用上述信息,开发者和研究人员能够有效地利用该项目来评价各种基于CLIP架构的模型在不同视觉理解任务中的性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
197
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120