【亲测免费】 开源项目 DPIR 使用教程
2026-01-17 09:17:33作者:翟江哲Frasier
项目介绍
DPIR(Plug-and-Play Image Restoration with Deep Denoiser Prior)是一个基于深度学习先验的去噪插件式图像恢复项目。该项目由IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI)在2021年发表。DPIR利用深度卷积神经网络(CNN)进行图像去噪,并将其应用于图像恢复任务中,如去模糊、超分辨率和色彩图像去马赛克等。
项目快速启动
安装依赖
首先,确保你已经安装了Python和PyTorch。然后,克隆项目仓库并安装必要的依赖包:
git clone https://github.com/cszn/DPIR.git
cd DPIR
pip install -r requirements.txt
运行示例
以下是一个简单的示例,展示如何使用DPIR进行图像去噪:
import torch
from models import DnCNN
from utils import load_image, save_image
# 加载预训练模型
model = DnCNN()
model.load_state_dict(torch.load('path_to_pretrained_model.pth'))
model.eval()
# 加载图像
input_image = load_image('path_to_input_image.png')
input_tensor = torch.from_numpy(input_image).unsqueeze(0).permute(0, 3, 1, 2)
# 去噪
with torch.no_grad():
output_tensor = model(input_tensor)
# 保存结果
output_image = output_tensor.squeeze(0).permute(1, 2, 0).numpy()
save_image(output_image, 'path_to_output_image.png')
应用案例和最佳实践
应用案例
- 图像去模糊:DPIR可以有效地去除图像中的模糊,提高图像的清晰度。
- 单图像超分辨率:通过增加图像的分辨率,DPIR能够提升图像的细节表现。
- 色彩图像去马赛克:DPIR可以处理色彩图像的去马赛克问题,恢复图像的原始色彩。
最佳实践
- 选择合适的模型:根据具体的图像恢复任务选择合适的预训练模型。
- 调整参数:根据输入图像的特点调整模型的参数,以获得最佳的恢复效果。
- 批量处理:对于大量图像,可以编写脚本进行批量处理,提高效率。
典型生态项目
DPIR作为一个图像恢复工具,可以与其他图像处理和分析项目结合使用,例如:
- 图像识别系统:在图像识别前使用DPIR进行预处理,提高识别准确率。
- 医学图像分析:在医学图像分析中,DPIR可以帮助去除噪声,提高图像质量。
- 遥感图像处理:在遥感图像处理中,DPIR可以用于图像的去噪和增强,提高图像的可用性。
通过结合这些生态项目,DPIR能够在多个领域发挥其图像恢复的优势,提升整体图像处理的效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250