icestark 微前端解决方案快速入门教程
icestark 是一款由 Ice Lab 开发的,旨在解决大型应用微前端架构需求的解决方案。它支持多样的前端框架,如 React、Vue、Angular,并且提供了一系列功能来简化微前端的实施过程,包括沙盒环境、性能优化和灵活的接入方式。
1. 项目目录结构及介绍
典型的 icestark 项目结构展示了一款应用的基础布局和配置:
.
├── editorconfig # 编辑器配置文件
├── eslintignore # ESLint 忽略文件配置
├── eslintrc.js # ESLint 配置文件
├── gitignore # Git忽略文件配置
├── prettierrc # Prettier代码格式化配置
├── README.md # 项目说明文档
├── CHANGELOG.md # 更新日志
├── LICENSE # 许可证文件
├── codecov.yml # Codecov 配置文件
├── commitlint.config.js # CommitLint 规则配置
├── package.json # 包含依赖和脚本的主配置文件
├── pnpm-lock.yaml # Pnpm 锁文件(或npm/yarn等对应的依赖锁定文件)
├── pnpm-workspace.yaml # Pnpm 工作空间配置,定义了项目的工作区结构
├── setupJest.ts # Jest 测试设置
├── tsconfig.json # TypeScript编译配置
├── website # 项目网站相关文件夹
└── [其他业务相关源码文件]
这个结构清晰地区分了配置文件与源代码。核心的配置大多集中在根目录下的几个关键文件,而业务逻辑和界面则分布在特定的业务文件夹中。
2. 项目的启动文件介绍
在 icestark 中,虽然具体的启动文件可能因应用的不同而有所差异,但通常会有一个或者多个入口点,例如在主应用(main-app)中可能是src/App.jsx或src/App.vue,而对于子应用(child-app)可能是基于React或Vue的相似命名的文件。启动流程通常由以下部分组成:
-
对于主应用,启动文件会引入
@ice/stark相关的组件,如AppRouter,AppRoute,并且处理路由和子应用的注册加载。 -
子应用的启动可能更为简单,它关注于自身的渲染逻辑,并且在适配icestark时,可能会利用
registerAppEnter和registerAppLeave等生命周期函数来进行手动挂载和卸载。
3. 项目的配置文件介绍
主要配置文件:package.json 和 pnpm-workspace.yaml
-
package.json:包含了项目的元数据,如名称、版本、脚本命令、依赖等。启动命令如
npm start通常在这里定义。 -
pnpm-workspace.yaml(或类似npm/yarn的工作空间配置):在支持工作空间的环境中,定义了项目的结构和依赖关系,允许在单一的工程内管理多个包或应用。
微前端特定配置
- 在 icestark 的上下文中,配置主要体现在如何集成到你的应用中。例如,通过在主应用中加入
@ice/plugin-icestark插件并配置相关信息,这可能涉及修改ice.config.js或其他配置文件来指定应用类型为框架应用 (type: 'framework'),以及定义子应用的路径、加载模式和入口等。
示例配置片段:
在主应用的配置(可能在ice.config.js或相关配置文件中):
import { defineConfig } from '@ice/app';
import icestark from '@ice/plugin-icestark';
export default defineConfig(() => ({
plugins: [
// 设置应用为框架应用
icestark({
type: 'framework',
}),
],
}));
并在对应位置配置子应用的信息,可能在src/app.ts或特定配置文件里:
import { defineFrameworkConfig } from '@ice/plugin-icestark/types';
export const icestark = defineFrameworkConfig(() => ({
// ...子应用配置
}));
通过这样的配置,icestark能够管理和加载不同的微前端应用,实现大型应用的解耦与灵活管理。记得根据具体项目需求调整这些配置。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00