探索3D对象检测的边界:ST3D与ST3D++
2024-05-23 20:46:00作者:昌雅子Ethen
在这个数字化的时代,自动驾驶和智能交通系统的进步离不开精确的3D对象检测。然而,数据集间的不一致性给模型的迁移学习带来了挑战。为了解决这一问题,我们向您推荐ST3D(自我训练3D)和其增强版ST3D++,两个强大的开源项目,专为无监督领域适应3D物体检测而设计。
项目介绍
ST3D和ST3D++是基于OpenPCDet v0.3.0构建的,专注于跨域3D物体检测的自我训练方法。它们旨在通过自我学习策略,减少从源域到目标域的转换过程中的性能下降。这些项目不仅提供了训练代码和预训练模型,还支持Waymo到KITTI、nuScenes到KITTI以及Waymo到Lyft的转换任务。
技术分析
ST3D利用自我训练策略在源域和目标域之间建立桥梁,即使在没有目标域标签的情况下也能提升模型性能。其核心在于使用预测的3D框对未标记的目标域数据进行拟合,并将这些"伪标签"用于后续的迭代训练。而ST3D++在此基础上进行了改进,引入了噪声抑制机制,进一步提高了预测的准确性和稳定性。
应用场景
这两个项目非常适合在以下场景中使用:
- 自动驾驶系统:从一个城市的数据集(如Waymo)训练的模型可以在另一个城市(如Lyft或KITTI)中无缝应用,无需重新采集大量本地数据。
- 研究环境:对于研究者来说,这是一个理想的平台,可以探索如何改善跨域3D检测,优化自我训练策略,甚至开发新的适应方法。
- 数据稀缺的应用:当针对特定环境的3D标注数据不足时,可借助ST3D和ST3D++从类似但更丰富的数据集中学习。
项目特点
- 兼容性广: 与OpenPCDet的深度集成,确保与最新更新的兼容性。
- 高效率自我训练: 采用自我学习框架,无需目标域的标注就能提升模型性能。
- 卓越的泛化能力: 在多个公共数据集上展示出优秀的结果,证明了其强大的跨域适应能力。
- 易于使用: 提供详细的安装和使用指南,方便快速上手。
为了体验ST3D和ST3D++的强大功能,请参照提供的配置文件进行训练和推理。同时,项目团队还提供了一部分预训练模型,以帮助您快速验证算法的效果。别忘了,在使用Waymo数据时,务必遵守其非商业使用的许可协议。
引用本文研究成果时,敬请参考以下论文:
@inproceedings{yang2021st3d,
title={ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection},
author={Yang, Jihan and Shi, Shaoshuai and Wang, Zhe and Li, Hongsheng and Qi, Xiaojuan},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2021}
}
@article{yang2021st3d++,
title={ST3D++: Denoised Self-training for Unsupervised Dom
让我们一起推动3D物体检测技术的进步,解锁未来的智能世界!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869