PocketFlow-Typescript 工作流设计模式解析
2025-06-19 17:15:51作者:邬祺芯Juliet
在复杂任务处理中,单一的大型语言模型(LLM)调用往往难以胜任。PocketFlow-Typescript项目通过工作流(Workflow)设计模式,提供了一种优雅的任务分解解决方案。
工作流的核心思想
工作流模式的核心在于任务分解(Task Decomposition),将复杂任务拆分为多个有序节点(Node)组成的链式结构。每个节点负责处理任务的一个特定部分,通过共享状态(Shared State)在节点间传递信息。
这种设计模式具有以下优势:
- 降低单个LLM调用的复杂度
- 提高任务处理的可靠性和一致性
- 便于调试和优化各个处理环节
- 增强代码的可维护性和可扩展性
粒度平衡的艺术
在设计工作流时,关键在于找到任务分解的最佳粒度:
- 粒度过粗:单个节点任务过于复杂,可能导致LLM处理效果不佳
- 粒度过细:节点间缺乏足够上下文,结果一致性难以保证
通常需要多次迭代才能找到这个"甜蜜点"。对于包含大量边界条件的复杂任务,可以考虑使用代理(Agent)模式。
实战案例:文章写作工作流
让我们通过一个文章写作的完整示例,深入理解工作流模式的实际应用。
1. 定义共享状态
首先定义节点间共享的数据结构:
interface SharedState {
topic?: string; // 文章主题
outline?: string; // 文章大纲
draft?: string; // 初稿内容
final_article?: string; // 最终文章
}
2. 构建处理节点
大纲生成节点
class GenerateOutline extends Node<SharedState> {
async prep(shared: SharedState): Promise<string> {
return shared.topic || ""; // 从共享状态获取主题
}
async exec(topic: string): Promise<string> {
// 调用LLM生成大纲
return await callLLM(`Create a detailed outline for an article about ${topic}`);
}
async post(shared: SharedState, _: string, outline: string): Promise<string> {
shared.outline = outline; // 将大纲存入共享状态
return "default"; // 默认跳转到下一个节点
}
}
内容撰写节点
class WriteSection extends Node<SharedState> {
async prep(shared: SharedState): Promise<string> {
return shared.outline || ""; // 从共享状态获取大纲
}
async exec(outline: string): Promise<string> {
// 调用LLM基于大纲撰写内容
return await callLLM(`Write content based on this outline: ${outline}`);
}
async post(shared: SharedState, _: string, draft: string): Promise<string> {
shared.draft = draft; // 将初稿存入共享状态
return "default"; // 默认跳转到下一个节点
}
}
审阅优化节点
class ReviewAndRefine extends Node<SharedState> {
async prep(shared: SharedState): Promise<string> {
return shared.draft || ""; // 从共享状态获取初稿
}
async exec(draft: string): Promise<string> {
// 调用LLM审阅并优化内容
return await callLLM(`Review and improve this draft: ${draft}`);
}
async post(shared: SharedState, _: string, final: string): Promise<undefined> {
shared.final_article = final; // 存储最终文章
return undefined; // 工作流结束
}
}
3. 组装工作流
将各个节点按处理顺序连接:
const outline = new GenerateOutline();
const write = new WriteSection();
const review = new ReviewAndRefine();
// 构建节点链
outline.next(write).next(review);
// 创建并运行工作流
const writingFlow = new Flow(outline);
writingFlow.run({ topic: "AI Safety" }); // 初始化共享状态
高级应用场景
对于更复杂的动态场景,工作流模式还可以:
- 条件分支:根据节点处理结果选择不同后续路径
- 并行处理:同时执行多个独立节点
- 循环结构:对某些处理环节进行迭代优化
- 错误处理:添加专门的错误处理节点
最佳实践建议
- 状态设计:精心设计共享状态,确保包含所有必要信息但不过度冗余
- 节点职责:每个节点应专注于单一职责,保持高内聚
- 错误处理:考虑各种可能的失败情况并设计恢复机制
- 性能优化:监控各节点性能,识别瓶颈并进行优化
- 可测试性:确保每个节点可以独立测试,便于验证和调试
通过PocketFlow-Typescript的工作流模式,开发者可以构建出结构清晰、易于维护的复杂LLM应用,充分发挥大型语言模型在各环节的处理能力。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136