Asterinas项目中的Intel TDX网络性能测试问题分析
2025-06-28 04:49:00作者:宗隆裙
在Asterinas项目开发过程中,开发团队发现了一个与Intel TDX(Trust Domain Extensions)相关的网络性能测试问题。这个问题表现为在Intel TDX环境下运行网络基准测试时,virtio-net网络设备出现异常,导致多个网络基准测试用例失败。
问题现象
当在Intel TDX环境中执行网络基准测试时,系统监控显示virtio-net设备出现异常行为。从性能监控数据可以观察到,网络吞吐量明显低于预期水平,同时伴随着较高的延迟和丢包率。这些异常现象直接导致了一系列网络基准测试用例的失败。
根本原因分析
经过深入调查,开发团队发现问题的根源在于TDX虚拟机的启动参数配置。当前系统存在两个不同的参数配置来源:
- OSDK.toml配置文件提供的参数
- tools/qemu_args.sh脚本生成的参数
在实际运行过程中,TDX虚拟机错误地使用了OSDK.toml中的参数,而没有采用专门为基准测试优化的qemu_args.sh脚本中的网络参数配置。这种参数来源的不一致导致了网络设备的非最优配置。
技术细节
值得注意的是,这个问题与QEMU的编译方式无关。虽然在构建TDX版本的QEMU时启用了slirp支持(--enable-slirp选项),但这实际上只影响用户模式(user mode)网络后端的使用。而基准测试使用的是TAP后端网络模式,这种模式下slirp支持并不是必需的。
在虚拟化环境中,网络后端的正确配置对性能有重大影响:
- 用户模式(user mode)后端:通过libslirp实现,适合开发测试,但性能较低
- TAP后端:提供接近原生性能,适合性能基准测试
解决方案
针对这个问题,开发团队提出了两个解决方案:
- 升级TDX开发容器镜像中的QEMU版本,确保其网络功能完整性和性能优化
- 临时移除有问题的测试用例,待问题完全解决后再重新引入
此外,团队还发现即使解决了网络参数问题,Asterinas虚拟机仍存在长时间停顿的现象,这需要作为独立问题进行进一步调查和优化。
经验总结
这个案例为虚拟化环境下的性能测试提供了重要经验:
- 参数配置一致性对测试结果有决定性影响
- 不同网络后端的选择应根据测试目的进行合理配置
- 性能问题往往是多因素导致的,需要系统性的排查方法
开发团队通过这个问题加深了对TDX虚拟化环境下网络性能特性的理解,为后续的性能优化工作奠定了基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210