首页
/ Asterinas项目中的Intel TDX网络性能测试问题分析

Asterinas项目中的Intel TDX网络性能测试问题分析

2025-06-28 06:14:43作者:宗隆裙

在Asterinas项目开发过程中,开发团队发现了一个与Intel TDX(Trust Domain Extensions)相关的网络性能测试问题。这个问题表现为在Intel TDX环境下运行网络基准测试时,virtio-net网络设备出现异常,导致多个网络基准测试用例失败。

问题现象

当在Intel TDX环境中执行网络基准测试时,系统监控显示virtio-net设备出现异常行为。从性能监控数据可以观察到,网络吞吐量明显低于预期水平,同时伴随着较高的延迟和丢包率。这些异常现象直接导致了一系列网络基准测试用例的失败。

根本原因分析

经过深入调查,开发团队发现问题的根源在于TDX虚拟机的启动参数配置。当前系统存在两个不同的参数配置来源:

  1. OSDK.toml配置文件提供的参数
  2. tools/qemu_args.sh脚本生成的参数

在实际运行过程中,TDX虚拟机错误地使用了OSDK.toml中的参数,而没有采用专门为基准测试优化的qemu_args.sh脚本中的网络参数配置。这种参数来源的不一致导致了网络设备的非最优配置。

技术细节

值得注意的是,这个问题与QEMU的编译方式无关。虽然在构建TDX版本的QEMU时启用了slirp支持(--enable-slirp选项),但这实际上只影响用户模式(user mode)网络后端的使用。而基准测试使用的是TAP后端网络模式,这种模式下slirp支持并不是必需的。

在虚拟化环境中,网络后端的正确配置对性能有重大影响:

  • 用户模式(user mode)后端:通过libslirp实现,适合开发测试,但性能较低
  • TAP后端:提供接近原生性能,适合性能基准测试

解决方案

针对这个问题,开发团队提出了两个解决方案:

  1. 升级TDX开发容器镜像中的QEMU版本,确保其网络功能完整性和性能优化
  2. 临时移除有问题的测试用例,待问题完全解决后再重新引入

此外,团队还发现即使解决了网络参数问题,Asterinas虚拟机仍存在长时间停顿的现象,这需要作为独立问题进行进一步调查和优化。

经验总结

这个案例为虚拟化环境下的性能测试提供了重要经验:

  1. 参数配置一致性对测试结果有决定性影响
  2. 不同网络后端的选择应根据测试目的进行合理配置
  3. 性能问题往往是多因素导致的,需要系统性的排查方法

开发团队通过这个问题加深了对TDX虚拟化环境下网络性能特性的理解,为后续的性能优化工作奠定了基础。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
62
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133