NVIDIA Isaac-GR00T项目中的数据集转换问题解析
问题背景
在使用NVIDIA Isaac-GR00T项目进行机器人策略评估时,开发者可能会遇到一个常见的数据集转换错误。具体表现为当尝试评估微调后的模型时,系统抛出ValueError异常,提示输入数据格式与预期不符,特别是缺少video.ego_view键值。
错误原因深度分析
该错误的根本原因在于数据集预处理流程中的转换步骤配置不当。项目中的LeRobotSingleDataset类在默认情况下会自动应用模态转换(Modality Transforms),这些转换会将原始图像和语言数据通过Siglip处理器和语言处理器进行预处理,从而将输入数据转换为包含'pixel_values'和'input_ids'键值的格式。
然而,当评估流程尝试应用VideoToTensor转换时,它期望的输入格式是原始的、未经处理的视频数据,特别是需要包含'video.ego_view'键值。由于数据已经被预处理过,这个键值自然不存在,导致评估流程失败。
解决方案
解决这个问题的关键在于正确配置数据集加载时的转换参数。具体方法是在创建LeRobotSingleDataset实例时,显式地将transforms参数设置为None:
dataset = LeRobotSingleDataset(
dataset_path="demo_data/robot_sim.PickNPlace",
modality_configs=modality_config,
transforms=None, # 关键设置
embodiment_tag=EmbodimentTag.GR1,
)
通过这样的配置,可以确保数据集加载时不自动应用任何转换,保留原始数据格式,从而满足后续评估流程的要求。
技术建议
-
理解数据处理流程:在使用类似GR00T这样的复杂机器人学习框架时,理解数据从原始输入到模型训练/评估的完整处理流程非常重要。
-
调试技巧:当遇到类似的数据格式不匹配问题时,可以打印出数据集的键值列表,帮助快速定位问题所在。
-
配置灵活性:项目设计上通常提供了足够的配置灵活性,开发者需要仔细阅读文档,了解各个参数的具体作用。
-
版本兼容性:确保使用的数据集版本与模型版本相匹配,不同版本间可能存在数据处理流程的差异。
总结
在机器人学习项目中,数据处理流程的正确配置是确保模型训练和评估顺利进行的关键。通过理解NVIDIA Isaac-GR00T项目中数据处理的内在机制,开发者可以避免类似的数据格式转换问题,更高效地开展机器人策略的开发和评估工作。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00