NVIDIA Isaac-GR00T项目中的数据集转换问题解析
问题背景
在使用NVIDIA Isaac-GR00T项目进行机器人策略评估时,开发者可能会遇到一个常见的数据集转换错误。具体表现为当尝试评估微调后的模型时,系统抛出ValueError异常,提示输入数据格式与预期不符,特别是缺少video.ego_view键值。
错误原因深度分析
该错误的根本原因在于数据集预处理流程中的转换步骤配置不当。项目中的LeRobotSingleDataset类在默认情况下会自动应用模态转换(Modality Transforms),这些转换会将原始图像和语言数据通过Siglip处理器和语言处理器进行预处理,从而将输入数据转换为包含'pixel_values'和'input_ids'键值的格式。
然而,当评估流程尝试应用VideoToTensor转换时,它期望的输入格式是原始的、未经处理的视频数据,特别是需要包含'video.ego_view'键值。由于数据已经被预处理过,这个键值自然不存在,导致评估流程失败。
解决方案
解决这个问题的关键在于正确配置数据集加载时的转换参数。具体方法是在创建LeRobotSingleDataset实例时,显式地将transforms参数设置为None:
dataset = LeRobotSingleDataset(
dataset_path="demo_data/robot_sim.PickNPlace",
modality_configs=modality_config,
transforms=None, # 关键设置
embodiment_tag=EmbodimentTag.GR1,
)
通过这样的配置,可以确保数据集加载时不自动应用任何转换,保留原始数据格式,从而满足后续评估流程的要求。
技术建议
-
理解数据处理流程:在使用类似GR00T这样的复杂机器人学习框架时,理解数据从原始输入到模型训练/评估的完整处理流程非常重要。
-
调试技巧:当遇到类似的数据格式不匹配问题时,可以打印出数据集的键值列表,帮助快速定位问题所在。
-
配置灵活性:项目设计上通常提供了足够的配置灵活性,开发者需要仔细阅读文档,了解各个参数的具体作用。
-
版本兼容性:确保使用的数据集版本与模型版本相匹配,不同版本间可能存在数据处理流程的差异。
总结
在机器人学习项目中,数据处理流程的正确配置是确保模型训练和评估顺利进行的关键。通过理解NVIDIA Isaac-GR00T项目中数据处理的内在机制,开发者可以避免类似的数据格式转换问题,更高效地开展机器人策略的开发和评估工作。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00