Effective-Django项目教程:深入理解Django模型
引言
在Django框架中,模型(Model)是构建Web应用的核心组件之一。本文将基于Effective-Django项目中的模型教程,深入讲解Django模型的使用方法、最佳实践以及相关概念。
数据库配置
Django原生支持多种数据库后端,包括MySQL、PostgreSQL、SQLite3和Oracle。在Effective-Django项目中,作者选择了SQLite3作为示例数据库,原因在于:
- SQLite3从Python 2.5开始就内置在Python标准库中
- 无需额外安装数据库服务器
- 适合开发和测试环境
配置数据库需要在项目的settings.py文件中设置DATABASES字典:
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
}
}
值得注意的是,数据库引擎是以字符串形式指定的,而不是直接引用Python对象。这是因为settings文件需要能够被轻松导入而不产生副作用。
创建模型
Django模型大致对应数据库中的表,同时封装了业务逻辑。所有模型都继承自django.db.models.Model基类。
Effective-Django项目中定义了一个简单的Contact模型:
from django.db import models
class Contact(models.Model):
first_name = models.CharField(max_length=255)
last_name = models.CharField(max_length=255)
email = models.EmailField()
def __str__(self):
return f"{self.first_name} {self.last_name}"
模型字段说明:
- CharField:用于存储字符串,需要指定max_length参数
- EmailField:本质上也是CharField,但增加了电子邮件格式验证
同步数据库
创建模型后,需要运行以下命令创建对应的数据库表:
python manage.py syncdb
但你会发现contacts_contact表并没有被创建,这是因为我们还需要在INSTALLED_APPS中添加contacts应用:
INSTALLED_APPS = (
...
'contacts',
)
模型操作
Django提供了丰富的API来操作模型数据。通过Django shell可以方便地进行交互:
python manage.py shell
在shell中可以执行各种CRUD操作:
# 创建记录
Contact.objects.create(first_name='Nathan', last_name='Yergler')
# 查询所有记录
Contact.objects.all()
# 获取特定记录
nathan = Contact.objects.get(first_name='Nathan')
# 查看记录ID
nathan.id
模型管理器(Model Manager)
每个Django模型都有一个默认的objects管理器,它相当于数据库表的抽象。管理器提供了查询功能,可以返回QuerySet对象。
常用查询方法:
- filter():过滤查询
- get():获取单个记录(如果找到多个会抛出异常)
模型测试
Effective-Django强调了为模型方法编写测试的重要性。例如测试__str__方法:
from django.test import TestCase
from contacts.models import Contact
class ContactTests(TestCase):
def test_str(self):
contact = Contact(
first_name='Nathan',
last_name='Yergler'
)
self.assertEqual(
str(contact),
'Nathan Yergler'
)
运行测试:
python manage.py test contacts
Django会为测试创建临时数据库,确保测试环境的隔离性。
核心概念总结
- 模型定义:描述数据库表结构和业务逻辑
- 同步数据库:使用syncdb命令创建表结构
- 模型管理器:提供集合级别的操作接口
- 单元测试:确保模型方法的正确性
最佳实践
- 始终为模型方法编写测试
- 合理使用模型继承来减少代码重复
- 将业务逻辑放在模型中,而不是视图中
- 使用模型验证确保数据完整性
- 考虑使用模型信号(Model Signals)处理特定操作
通过Effective-Django项目的模型教程,我们深入理解了Django模型的核心概念和实际应用。掌握这些知识将帮助你构建更加健壮、可维护的Django应用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00