GLM-4多轮对话微调中的Loss计算机制解析
2025-06-04 08:25:16作者:戚魁泉Nursing
引言
在大型语言模型(LLM)的微调过程中,损失函数(Loss)的计算方式直接影响模型的学习效果。特别是在多轮对话场景下,如何设计合理的Loss计算策略尤为关键。本文将深入剖析GLM-4模型在多轮对话微调中的Loss计算机制,帮助开发者更好地理解其实现原理。
多轮对话的Loss计算原理
GLM-4采用了一种自回归式的Loss计算方式,其核心思想是:将历史对话内容作为输入,只对模型当前轮次的生成部分计算Loss。这种设计确保了模型能够学习到对话的连贯性,同时避免了对历史内容的重复学习。
具体实现上,对于每一轮对话:
- 将对话开始标记(BOS)、系统提示(SYSTEM)、用户输入(USER)和之前的所有对话内容作为输入
- 只对模型当前轮次生成的助手回复(assistant)部分计算Loss
- 历史对话内容仅作为上下文信息,不参与Loss计算
两种Loss计算方式的对比
在实际应用中,开发者可能会遇到两种不同的Loss计算策略:
-
标准方式(GLM-4采用):
- 每次只计算当前轮次生成的Loss
- 历史对话作为上下文输入
- 优点:符合对话生成的自然流程,避免冗余计算
- 缺点:训练效率相对较低
-
拼接方式:
- 将所有轮次的输入输出拼接后统一计算Loss
- 优点:训练效率较高
- 缺点:可能导致模型学习到不合理的对话模式
实现细节与优化建议
在实际微调GLM-4时,开发者需要注意:
-
对话格式处理:确保正确使用特殊标记(BOS、SYSTEM、USER、assistant)来分隔不同对话角色
-
注意力掩码:合理设置注意力掩码,确保模型只关注有效上下文
-
批次处理:由于对话长度不一,需要做好padding和mask处理
-
学习率调整:多轮对话微调可能需要更小的学习率和更长的训练步数
总结
GLM-4采用的多轮对话Loss计算机制虽然训练效率相对较低,但更符合对话生成的本质特性,能够帮助模型学习到更自然的对话模式。开发者在实际应用中可以根据具体需求选择合适的策略,但需要注意保持对话上下文的连贯性和一致性。理解这一机制对于成功微调GLM-4模型至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.92 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8