Tidyposterior开源项目最佳实践
2025-05-20 05:51:18作者:柏廷章Berta
1、项目介绍
Tidyposterior 是一个基于 R 语言的包,用于进行模型的后续分析,特别是对于通过重采样生成的模型结果进行分析。该包利用贝叶斯广义线性模型来比较模型的表现,无需涉及测试集。Tidyposterior 可以与 rsample 对象一起使用,也可以用于任何以数据帧形式表示的结果。
2、项目快速启动
为了快速启动 Tidyposterior 项目,你需要安装 R 语言环境。以下是在 R 中安装和启动 Tidyposterior 的步骤:
# 安装 Tidyposterior
install.packages("tidyposterior")
# 加载必要的包
library(tidymodels)
library(tidyposterior)
# 加载数据集
data("two_class_dat", package = "modeldata")
# 设置随机种子
set.seed(100)
# 定义数据集的折叠
folds <- vfold_cv(two_class_dat)
# 定义模型
logistic_reg_glm_spec <- logistic_reg() %>% set_engine("glm")
mars_earth_spec <- mars(prod_degree = 1) %>% set_engine("earth") %>% set_mode("classification")
# 设置重采样控制
rs_ctrl <- control_resamples(save_workflow = TRUE)
# 拟合模型并收集结果
logistic_reg_glm_res <- logistic_reg_glm_spec %>% fit_resamples(Class ~ ., resamples = folds, control = rs_ctrl)
mars_earth_res <- mars_earth_spec %>% fit_resamples(Class ~ ., resamples = folds, control = rs_ctrl)
# 提取 ROC AUC 指标
logistic_roc <- collect_metrics(logistic_reg_glm_res, summarize = FALSE) %>%
dplyr::filter(.metric == "roc_auc") %>%
dplyr::select(id, logistic = .estimate)
mars_roc <- collect_metrics(mars_earth_res, summarize = FALSE) %>%
dplyr::filter(.metric == "roc_auc") %>%
dplyr::select(id, mars = .estimate)
# 合并结果
resamples_df <- full_join(logistic_roc, mars_roc, by = "id")
# 使用 perf_mod 进行模型比较
set.seed(101)
roc_model_via_df <- perf_mod(resamples_df, iter = 2000)
3、应用案例和最佳实践
应用案例:Tidyposterior 可以用于比较不同模型的性能。例如,你可以使用 Tidyposterior 来比较逻辑回归模型和 MARS 模型在 10 折交叉验证下的 ROC AUC 值。
最佳实践:为了获得可靠的比较结果,建议使用足够多的重采样迭代次数。此外,应确保模型和重采样过程在比较之前已经正确设置。
4、典型生态项目
Tidyposterior 是 tidymodels 套件的一部分,它与 rsample、broom、dplyr 等其他 R 包集成得很好,形成一个完整的模型开发和评估生态系统。这些包共同提供了一套统一的工具和最佳实践,帮助数据科学家和统计学家进行可重复的数据分析。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
470
3.48 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
718
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
212
85
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1