Tidyposterior开源项目最佳实践
2025-05-20 11:08:11作者:柏廷章Berta
1、项目介绍
Tidyposterior 是一个基于 R 语言的包,用于进行模型的后续分析,特别是对于通过重采样生成的模型结果进行分析。该包利用贝叶斯广义线性模型来比较模型的表现,无需涉及测试集。Tidyposterior 可以与 rsample 对象一起使用,也可以用于任何以数据帧形式表示的结果。
2、项目快速启动
为了快速启动 Tidyposterior 项目,你需要安装 R 语言环境。以下是在 R 中安装和启动 Tidyposterior 的步骤:
# 安装 Tidyposterior
install.packages("tidyposterior")
# 加载必要的包
library(tidymodels)
library(tidyposterior)
# 加载数据集
data("two_class_dat", package = "modeldata")
# 设置随机种子
set.seed(100)
# 定义数据集的折叠
folds <- vfold_cv(two_class_dat)
# 定义模型
logistic_reg_glm_spec <- logistic_reg() %>% set_engine("glm")
mars_earth_spec <- mars(prod_degree = 1) %>% set_engine("earth") %>% set_mode("classification")
# 设置重采样控制
rs_ctrl <- control_resamples(save_workflow = TRUE)
# 拟合模型并收集结果
logistic_reg_glm_res <- logistic_reg_glm_spec %>% fit_resamples(Class ~ ., resamples = folds, control = rs_ctrl)
mars_earth_res <- mars_earth_spec %>% fit_resamples(Class ~ ., resamples = folds, control = rs_ctrl)
# 提取 ROC AUC 指标
logistic_roc <- collect_metrics(logistic_reg_glm_res, summarize = FALSE) %>%
dplyr::filter(.metric == "roc_auc") %>%
dplyr::select(id, logistic = .estimate)
mars_roc <- collect_metrics(mars_earth_res, summarize = FALSE) %>%
dplyr::filter(.metric == "roc_auc") %>%
dplyr::select(id, mars = .estimate)
# 合并结果
resamples_df <- full_join(logistic_roc, mars_roc, by = "id")
# 使用 perf_mod 进行模型比较
set.seed(101)
roc_model_via_df <- perf_mod(resamples_df, iter = 2000)
3、应用案例和最佳实践
应用案例:Tidyposterior 可以用于比较不同模型的性能。例如,你可以使用 Tidyposterior 来比较逻辑回归模型和 MARS 模型在 10 折交叉验证下的 ROC AUC 值。
最佳实践:为了获得可靠的比较结果,建议使用足够多的重采样迭代次数。此外,应确保模型和重采样过程在比较之前已经正确设置。
4、典型生态项目
Tidyposterior 是 tidymodels 套件的一部分,它与 rsample、broom、dplyr 等其他 R 包集成得很好,形成一个完整的模型开发和评估生态系统。这些包共同提供了一套统一的工具和最佳实践,帮助数据科学家和统计学家进行可重复的数据分析。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492