首页
/ Tidyposterior开源项目最佳实践

Tidyposterior开源项目最佳实践

2025-05-20 08:34:05作者:柏廷章Berta

1、项目介绍

Tidyposterior 是一个基于 R 语言的包,用于进行模型的后续分析,特别是对于通过重采样生成的模型结果进行分析。该包利用贝叶斯广义线性模型来比较模型的表现,无需涉及测试集。Tidyposterior 可以与 rsample 对象一起使用,也可以用于任何以数据帧形式表示的结果。

2、项目快速启动

为了快速启动 Tidyposterior 项目,你需要安装 R 语言环境。以下是在 R 中安装和启动 Tidyposterior 的步骤:

# 安装 Tidyposterior
install.packages("tidyposterior")

# 加载必要的包
library(tidymodels)
library(tidyposterior)

# 加载数据集
data("two_class_dat", package = "modeldata")

# 设置随机种子
set.seed(100)

# 定义数据集的折叠
folds <- vfold_cv(two_class_dat)

# 定义模型
logistic_reg_glm_spec <- logistic_reg() %>% set_engine("glm")
mars_earth_spec <- mars(prod_degree = 1) %>% set_engine("earth") %>% set_mode("classification")

# 设置重采样控制
rs_ctrl <- control_resamples(save_workflow = TRUE)

# 拟合模型并收集结果
logistic_reg_glm_res <- logistic_reg_glm_spec %>% fit_resamples(Class ~ ., resamples = folds, control = rs_ctrl)
mars_earth_res <- mars_earth_spec %>% fit_resamples(Class ~ ., resamples = folds, control = rs_ctrl)

# 提取 ROC AUC 指标
logistic_roc <- collect_metrics(logistic_reg_glm_res, summarize = FALSE) %>%
  dplyr::filter(.metric == "roc_auc") %>%
  dplyr::select(id, logistic = .estimate)
mars_roc <- collect_metrics(mars_earth_res, summarize = FALSE) %>%
  dplyr::filter(.metric == "roc_auc") %>%
  dplyr::select(id, mars = .estimate)

# 合并结果
resamples_df <- full_join(logistic_roc, mars_roc, by = "id")

# 使用 perf_mod 进行模型比较
set.seed(101)
roc_model_via_df <- perf_mod(resamples_df, iter = 2000)

3、应用案例和最佳实践

应用案例:Tidyposterior 可以用于比较不同模型的性能。例如,你可以使用 Tidyposterior 来比较逻辑回归模型和 MARS 模型在 10 折交叉验证下的 ROC AUC 值。

最佳实践:为了获得可靠的比较结果,建议使用足够多的重采样迭代次数。此外,应确保模型和重采样过程在比较之前已经正确设置。

4、典型生态项目

Tidyposterior 是 tidymodels 套件的一部分,它与 rsamplebroomdplyr 等其他 R 包集成得很好,形成一个完整的模型开发和评估生态系统。这些包共同提供了一套统一的工具和最佳实践,帮助数据科学家和统计学家进行可重复的数据分析。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
24
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
267
2.54 K
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
pytorchpytorch
Ascend Extension for PyTorch
Python
98
126
flutter_flutterflutter_flutter
暂无简介
Dart
557
124
fountainfountain
一个用于服务器应用开发的综合工具库。 - 零配置文件 - 环境变量和命令行参数配置 - 约定优于配置 - 深刻利用仓颉语言特性 - 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
57
11
IssueSolutionDemosIssueSolutionDemos
用于管理和运行HarmonyOS Issue解决方案Demo集锦。
ArkTS
13
23
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
604
cangjie_compilercangjie_compiler
仓颉编译器源码及 cjdb 调试工具。
C++
117
93
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1