LibXtract 技术文档
本文档旨在帮助用户安装、使用和深入了解 LibXtract 项目。以下内容将涵盖安装指南、项目使用说明以及项目 API 使用文档。
1. 安装指南
依赖关系
在构建 SWIG 绑定时,需要安装 SWIG。对于 Python 绑定,需要安装 Python。对于 Java 绑定,需要安装 Java。
安装步骤
- 下载 LibXtract 的最新源代码,可从 LibXtract GitHub 下载页面获取。
- 解压下载的源代码。
- 在源代码目录中,执行以下命令构建并安装到
/usr/local目录:make install - 如果需要将 LibXtract 安装到其他目录,可以使用以下命令:
make install PREFIX=/somewhere/else
2. 项目的使用说明
LibXtract 是一个简单、便携、轻量级的音频特征提取库。该库的目的是提供一组相对完整的特征提取原语,这些原语设计为可以级联,以创建特征提取层次结构。
例如,'方差'、'平均偏差'、'偏度' 和 '峰度' 都需要预先计算输入向量的 '均值'。然而,库的设计并不是在每个函数内部计算 '均值',而是期望 '均值' 作为参数传入。这意味着如果用户希望使用所有这些特征,只需计算一次 '均值',然后将其传递给需要的函数。
这种 '级联' 特征的哲学贯穿整个库,例如对于在信号向量的大小谱上操作的特征(如 '不规律性'),大小谱不是在各自的函数内部计算,而是将包含大小谱的数组的第一个元素的指针作为参数传入。
这种设计不仅提高了在计算大量特征时的效率,还使库更加灵活,因为提取函数可以任意组合(例如,可以计算梅尔频率倒谱系数的不规律性)。
完整的特征列表可以通过查看头文件或阅读包含在此软件包中的 doxygen 文档获得。
3. 项目 API 使用文档
LibXtract 提供了一组音频特征提取原语,这些原语可以通过级联来创建特征提取层次结构。具体的 API 文档可以在项目的 doxygen 文档中找到。如果 doxygen 已安装,LibXtract 构建系统在 configure 过程中会自动检测并生成 LaTeX 和 HTML 文档在 doc 目录中。生成的 HTML 文档可以通过打开 doc/html/index.html 文件在网页浏览器中查看。
4. 项目安装方式
项目支持多种安装方式,具体如下:
-
默认安装到
/usr/local目录:make install -
安装到指定目录:
make install PREFIX=/somewhere/else
通过遵循上述安装指南和使用说明,用户可以轻松安装和使用 LibXtract,进一步探索音频特征提取的强大功能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00