Springdoc OpenAPI 示例项目教程
项目介绍
Springdoc OpenAPI 是一个开源项目,旨在简化在Spring Boot应用程序中集成OpenAPI 3规范的过程。它通过自动生成API文档,帮助开发者更高效地进行API管理和文档编写。该项目支持多种配置选项,使得开发者可以根据需要自定义API文档的生成方式。
项目快速启动
环境准备
- Java 8 或更高版本
- Maven 或 Gradle
- Spring Boot 2.x
快速启动步骤
-
克隆项目
git clone https://github.com/springdoc/springdoc-openapi-demos.git cd springdoc-openapi-demos -
构建项目
使用Maven构建项目:
mvn clean install -
运行项目
启动Spring Boot应用程序:
mvn spring-boot:run -
访问API文档
项目启动后,可以通过以下URL访问生成的API文档:
http://localhost:8080/swagger-ui.html
示例代码
以下是一个简单的Spring Boot控制器示例,展示了如何使用Springdoc OpenAPI生成API文档:
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
@RequestMapping("/api")
public class HelloController {
@GetMapping("/hello")
public String sayHello() {
return "Hello, World!";
}
}
应用案例和最佳实践
应用案例
Springdoc OpenAPI 可以广泛应用于各种Spring Boot项目中,特别是在需要对外提供API文档的场景。例如,一个电商平台的后端服务可以使用Springdoc OpenAPI来生成详细的API文档,供前端开发者和第三方开发者参考。
最佳实践
-
配置自定义信息
在
application.properties或application.yml文件中配置自定义的API信息:springdoc.api-info.title=My API springdoc.api-info.description=This is a sample API springdoc.api-info.version=1.0.0 -
使用注解
使用Springdoc提供的注解来丰富API文档的内容,例如:
import io.swagger.v3.oas.annotations.Operation; import io.swagger.v3.oas.annotations.tags.Tag; @RestController @RequestMapping("/api") @Tag(name = "Hello API", description = "示例API") public class HelloController { @GetMapping("/hello") @Operation(summary = "问候接口", description = "返回一个简单的问候消息") public String sayHello() { return "Hello, World!"; } }
典型生态项目
Springdoc OpenAPI 可以与多个Spring生态项目集成,提供更强大的功能和更好的开发体验。以下是一些典型的生态项目:
-
Spring Security
与Spring Security集成,可以保护API文档的访问权限,确保只有授权用户才能查看和使用API文档。
-
Spring Data JPA
与Spring Data JPA集成,可以自动生成数据库操作相关的API文档,简化后端开发工作。
-
Spring Cloud
与Spring Cloud集成,可以在微服务架构中统一管理和展示各个服务的API文档,提高开发效率。
通过以上集成,Springdoc OpenAPI 可以更好地适应复杂的项目需求,提供全面的API文档支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00