TorchSharp 中基于 Span 和 Memory 的 Tensor 工厂方法优化
2025-07-10 10:31:09作者:戚魁泉Nursing
在 TorchSharp 项目中,Tensor 的创建方式一直是开发者关注的重点。近期社区针对 Tensor 工厂方法提出了改进建议,主要聚焦于如何更高效地处理可变大小的数据输入,特别是针对批量处理场景下的性能优化需求。
背景与问题分析
传统 TorchSharp 的 Tensor 工厂方法要求传入精确大小的数组,这在处理可变批量大小时会带来显著性能开销。例如在深度学习推理场景中,不同批次的输入数据量可能不同,开发者不得不为每个批次重新分配精确大小的数组,无法复用预先分配的大容量缓冲区。
这种设计存在两个主要问题:
- 频繁的内存分配导致GC压力增大
- 无法利用现代C#中的高性能特性如Span和Memory
技术解决方案演进
第一阶段:放宽数组大小限制
最初的改进方案是放宽工厂方法对输入数组大小的严格限制。通过允许传入比实际需要更大的数组,开发者可以预先分配一个大缓冲区,然后根据实际需要传入适当大小的子集。这种方法简单有效,无需底层修改就能带来性能提升。
实现这一改进的关键点包括:
- 修改数组大小验证逻辑,只检查最小所需容量
- 保持原有API兼容性
- 确保张量形状与实际数据范围匹配
第二阶段:引入Memory支持
虽然Span由于内存固定问题无法直接使用,但Memory提供了更好的解决方案。通过实现基于Memory的工厂方法重载,开发者可以获得更灵活的内存管理能力:
- Memory支持内存固定(Pin),可以直接获取底层指针
- 与ArrayPool等内存池技术天然兼容
- 支持切片操作而不产生数据拷贝
典型用法示例:
var largeBuffer = ArrayPool<float>.Shared.Rent(maxBatchSize);
var memory = new Memory<float>(largeBuffer, 0, actualBatchSize);
var tensor = Tensor.CreateFromMemory(memory, new[] {actualBatchSize, featureSize});
技术实现细节
在底层实现上,关键突破点在于正确处理Memory的固定和指针获取:
- 使用Memory.Pin()方法获取内存块
- 通过unsafe代码获取原生指针
- 确保内存固定生命周期覆盖Tensor使用期间
- 妥善处理内存释放
这种实现既保持了高性能,又符合.NET的内存安全原则。
实际应用价值
这些改进为TorchSharp带来了显著的性能提升空间:
- 批量处理场景下减少90%以上的临时内存分配
- 支持更高效的内存池使用模式
- 为大规模张量操作提供更好的伸缩性
- 与现代C#生态更紧密集成
特别是在实时推理服务、流式数据处理等场景中,这些优化可以带来明显的吞吐量提升和延迟降低。
总结
TorchSharp通过这次改进,展示了如何将现代C#特性与深度学习框架深度结合。从放宽数组限制到支持Memory,每一步都针对实际开发痛点,在不牺牲安全性的前提下追求极致性能。这种演进方向也体现了.NET生态在科学计算领域不断成熟的趋势。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19