TorchSharp 中基于 Span 和 Memory 的 Tensor 工厂方法优化
2025-07-10 07:12:30作者:戚魁泉Nursing
在 TorchSharp 项目中,Tensor 的创建方式一直是开发者关注的重点。近期社区针对 Tensor 工厂方法提出了改进建议,主要聚焦于如何更高效地处理可变大小的数据输入,特别是针对批量处理场景下的性能优化需求。
背景与问题分析
传统 TorchSharp 的 Tensor 工厂方法要求传入精确大小的数组,这在处理可变批量大小时会带来显著性能开销。例如在深度学习推理场景中,不同批次的输入数据量可能不同,开发者不得不为每个批次重新分配精确大小的数组,无法复用预先分配的大容量缓冲区。
这种设计存在两个主要问题:
- 频繁的内存分配导致GC压力增大
- 无法利用现代C#中的高性能特性如Span和Memory
技术解决方案演进
第一阶段:放宽数组大小限制
最初的改进方案是放宽工厂方法对输入数组大小的严格限制。通过允许传入比实际需要更大的数组,开发者可以预先分配一个大缓冲区,然后根据实际需要传入适当大小的子集。这种方法简单有效,无需底层修改就能带来性能提升。
实现这一改进的关键点包括:
- 修改数组大小验证逻辑,只检查最小所需容量
- 保持原有API兼容性
- 确保张量形状与实际数据范围匹配
第二阶段:引入Memory支持
虽然Span由于内存固定问题无法直接使用,但Memory提供了更好的解决方案。通过实现基于Memory的工厂方法重载,开发者可以获得更灵活的内存管理能力:
- Memory支持内存固定(Pin),可以直接获取底层指针
- 与ArrayPool等内存池技术天然兼容
- 支持切片操作而不产生数据拷贝
典型用法示例:
var largeBuffer = ArrayPool<float>.Shared.Rent(maxBatchSize);
var memory = new Memory<float>(largeBuffer, 0, actualBatchSize);
var tensor = Tensor.CreateFromMemory(memory, new[] {actualBatchSize, featureSize});
技术实现细节
在底层实现上,关键突破点在于正确处理Memory的固定和指针获取:
- 使用Memory.Pin()方法获取内存块
- 通过unsafe代码获取原生指针
- 确保内存固定生命周期覆盖Tensor使用期间
- 妥善处理内存释放
这种实现既保持了高性能,又符合.NET的内存安全原则。
实际应用价值
这些改进为TorchSharp带来了显著的性能提升空间:
- 批量处理场景下减少90%以上的临时内存分配
- 支持更高效的内存池使用模式
- 为大规模张量操作提供更好的伸缩性
- 与现代C#生态更紧密集成
特别是在实时推理服务、流式数据处理等场景中,这些优化可以带来明显的吞吐量提升和延迟降低。
总结
TorchSharp通过这次改进,展示了如何将现代C#特性与深度学习框架深度结合。从放宽数组限制到支持Memory,每一步都针对实际开发痛点,在不牺牲安全性的前提下追求极致性能。这种演进方向也体现了.NET生态在科学计算领域不断成熟的趋势。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++020Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
156
2 K

deepin linux kernel
C
22
6

Ascend Extension for PyTorch
Python
38
72

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
519
50

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
942
555

React Native鸿蒙化仓库
C++
195
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
396

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
359
12

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71