解决 ts-jest 在 React Native 0.73 测试中的预设问题
问题背景
在将 React Native 项目从 0.70 版本升级到 0.73 版本后,开发者可能会遇到一个常见的测试配置问题:validation error: Preset react-native not found.。这个错误通常出现在使用 ts-jest 进行 TypeScript 测试时,表明 Jest 无法找到 React Native 的预设配置。
问题分析
这个错误通常发生在 Jest 配置中尝试使用 react-native 预设时。在 React Native 0.73 版本中,测试配置可能需要进行一些调整才能正常工作。以下是可能导致此问题的几个常见原因:
- 
过时的 resolutions 配置:某些项目中可能遗留了 package.json 中的 resolutions 字段,这可能会干扰正常的依赖解析。
 - 
Jest 配置不兼容:升级 React Native 后,原有的 Jest 配置可能需要更新以匹配新版本的测试需求。
 - 
依赖版本冲突:不同测试相关包(jest、ts-jest、babel-jest)之间的版本不兼容。
 
解决方案
1. 检查并移除 resolutions 配置
在 package.json 中查找是否有 resolutions 字段,特别是包含以下内容的:
"resolutions": {
  "graceful-fs": "4.2.4",
  "@types/react": "^17"
}
这些强制解析的依赖项可能会干扰正常的测试环境配置。建议移除整个 resolutions 字段或至少移除与测试相关的部分。
2. 更新 Jest 配置
确保你的 jest.config.js 或 package.json 中的 Jest 配置部分正确设置了预设。对于 React Native 0.73,推荐使用以下配置:
module.exports = {
  preset: 'react-native',
  transform: {
    '^.+\\.tsx?$': 'ts-jest',
  },
  moduleFileExtensions: ['ts', 'tsx', 'js', 'jsx', 'json', 'node'],
  transformIgnorePatterns: [
    'node_modules/(?!(@react-native|react-native|react-native-vector-icons)/)',
  ],
};
3. 确保依赖版本兼容
检查并确保以下依赖项的版本相互兼容:
- jest
 - ts-jest
 - babel-jest
 - @types/jest
 
对于 React Native 0.73,推荐使用这些包的最新稳定版本。
预防措施
为了避免未来升级时出现类似问题,建议:
- 定期更新测试相关依赖
 - 在升级 React Native 主版本时,查阅官方升级指南中的测试配置变更
 - 考虑使用 React Native 测试库提供的预设配置
 - 维护一个干净的 package.json,避免不必要的 resolutions 配置
 
总结
React Native 版本升级时,测试配置往往需要相应调整。Preset react-native not found 错误通常可以通过清理 resolutions 配置、更新 Jest 设置和确保依赖兼容性来解决。保持测试环境的简洁和最新是避免这类问题的关键。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00