Elasticsearch Mapper Attachments插件安装与使用指南
1. 项目目录结构及介绍
Elasticsearch的Mapper Attachments插件源代码托管在GitHub上,其目录结构如下:
elasticsearch-mapper-attachments/
├── dev-tools # 开发工具相关文件夹
├── licenses # 许可证文件
├── src # 主要源代码存放目录
│ ├── main # 包含主程序代码,如Java源码等
│ └── test # 测试相关代码
├── .gitignore # Git忽略文件配置
├── CONTRIBUTING.md # 贡献者指南
├── LICENSE.txt # 许可证文件
├── README.md # 项目说明文档
├── build.gradle # Gradle构建脚本
└── ... # 其它可能的辅助文件或配置文件
说明:
src目录包含了插件的主要实现代码。LICENSE.txt记录了项目的授权协议(Apache-2.0)。README.md提供了安装、使用的基本指导信息。build.gradle是Gradle构建文件,用于编译和打包插件。
2. 项目的启动文件介绍
Mapper Attachments插件本身不直接提供一个独立的应用程序来“启动”,它是作为Elasticsearch的一个插件存在。因此,启动过程实际上是指集成到Elasticsearch中并使插件生效的过程。
Elasticsearch的启动通常通过执行其提供的脚本完成,例如,在Linux系统中,可能是通过运行bin/elasticsearch命令。为了使用此插件,你需要先确保Elasticsearch服务已启动,随后安装该插件。
插件安装命令示例:
bin/plugin install elasticsearch/elasticsearch-mapper-attachments/3.1.2
请注意,由于此项目已被归档,对于较新版本的Elasticsearch,应当改用Ingest Attachment Processor。
3. 项目的配置文件介绍
插件配置
Mapper Attachments插件的配置并不是直接在一个特定的文件中设置,而是通过Elasticsearch的全局配置或在索引的映射中指定。
全局配置示例
虽然该插件的主要配置是通过映射定义的,但可以调整某些全局设置。比如,如果要改变默认提取的字符数限制,可以在Elasticsearch的配置文件elasticsearch.yml中添加相应的配置(注意这可能依赖于具体版本的Elasticsearch是否支持这样的全局配置)。
# 示例配置,实际使用需确认是否适用
index.mapping.attachment.indexed_chars: 200000
映射配置
映射中的配置是在创建索引时定义的,以下展示了如何在映射中启用附件类型,并自定义属性:
PUT /my_index
{
"mappings": {
"properties": {
"resume": {
"type": "attachment",
"fields": {
"content": { "type": "text", "term_vector": "with_positions_offsets" }
},
"fielddata": true
}
}
}
}
这里,“resume”字段被定义为附件类型,并进一步指定了内容如何被处理,包括启用词向量以支持高亮等功能。
请注意,随着Elasticsearch版本更新,如5.0以上版本推荐使用Ingest API的Attachment Processor替代Mapper Attachments插件进行文档内容的处理。务必参照当前使用的Elasticsearch版本的官方文档来选择正确的集成方式。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00