Ragas项目中LLM模型在RAG评估中的分层应用解析
2025-05-26 15:07:36作者:俞予舒Fleming
引言
在构建和评估检索增强生成(RAG)系统时,模型的选择和配置对评估结果的准确性和可靠性至关重要。Ragas作为一个开源的RAG评估框架,采用了分层的LLM(大语言模型)应用策略,本文将深入解析这一设计理念及其技术实现。
Ragas中的LLM分层架构
Ragas项目在RAG评估流程中精心设计了多层次的LLM应用架构,主要包括以下关键组件:
- 生成器LLM(generator_llm):负责生成用于评估的合成测试数据集
- 评审LLM(critic_llm):对生成的问题和上下文进行质量筛选
- 评估LLM(llm):执行具体的评估指标计算
- 目标RAG系统的LLM(rag_llm):被评估的RAG系统自身的语言模型
各层LLM的技术考量
生成器LLM的选择
生成器LLM负责创建评估所需的测试数据,其质量直接影响评估的全面性。根据实践经验:
- 建议使用比目标RAG系统更强大的模型
- 生成阶段可以容忍较慢的响应时间
- 需要具备良好的多样性和创造性生成能力
评审LLM的独特作用
评审LLM在评估流程中扮演"质量守门员"的角色:
- 对生成器产生的问题和上下文进行筛选
- 确保评估数据的相关性和质量
- 可以采用专门微调的较小模型
- 与评估LLM功能相似,可考虑复用
评估LLM的关键特性
作为评估过程的核心,评估LLM需要:
- 高度的准确性和一致性
- 强大的推理和判断能力
- 对评估指标有深刻理解
- 通常是可用模型中最强大的一个
目标RAG系统LLM的定位
被评估的RAG系统自身的LLM:
- 通常针对实际应用场景优化
- 可能牺牲部分性能换取效率
- 是评估的基准对象而非工具
嵌入模型的一致性考量
在Ragas评估框架中,嵌入模型的使用也值得关注:
- 测试集生成和目标RAG系统可以使用相同嵌入模型
- 当前版本中检索器组件影响有限
- 实际应用中目标RAG系统的嵌入模型可能更强大
实践建议
基于Ragas项目的实践经验,我们建议:
- 优先确定目标RAG系统的LLM配置
- 为测试数据生成选择更强大的生成器LLM
- 评估和评审环节使用最高质量的LLM
- 嵌入模型可根据实际需求灵活配置
- 计算资源有限时,重点区分生成器和目标系统LLM
未来演进方向
Ragas团队正在重构测试集生成工具,预期将:
- 优化LLM的分层使用策略
- 提供更灵活的配置选项
- 增强各组件间的协同效应
- 进一步明确不同LLM的职责边界
结语
Ragas项目通过精心设计的LLM分层架构,为RAG系统评估提供了科学可靠的框架。理解各层LLM的定位和技术考量,有助于开发者构建更有效的评估流程,从而持续提升RAG系统的性能和质量。随着项目的不断演进,这一架构将继续优化,为社区提供更强大的评估能力。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
269
2.54 K
暂无简介
Dart
558
124
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
57
11
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
126
104
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.84 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
605
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
728
70