Stable Baselines3 并行训练中ep_rew_mean不显示的解决方案
2025-05-22 00:48:50作者:范靓好Udolf
问题背景
在使用Stable Baselines3进行强化学习训练时,许多开发者会遇到一个常见问题:当从单环境训练切换到使用SubprocVecEnv进行多进程并行训练时,训练日志中不再显示ep_len_mean(平均回合长度)和ep_rew_mean(平均回合奖励)这两个重要指标。这个问题尤其在自定义gym环境训练时容易出现。
问题原因分析
这个问题的根本原因在于缺少Monitor包装器(Wrapper)。在Stable Baselines3中,ep_len_mean和ep_rew_mean等回合统计信息是通过Monitor包装器来收集和记录的。当使用单环境训练时,这些信息会自动记录,但在使用SubprocVecEnv进行并行训练时,需要显式地为每个子环境添加Monitor包装器。
解决方案
要解决这个问题,需要在创建并行环境时为每个子环境添加Monitor包装器。具体实现方式如下:
- 首先导入必要的Monitor包装器:
from stable_baselines3.common.monitor import Monitor
- 修改环境创建函数,添加Monitor包装:
def make_env(env_class, seed, log_dir):
def _init():
env = env_class()
env = Monitor(env, log_dir)
env.seed(seed)
return env
return _init
- 在创建并行环境时,为每个环境指定单独的日志目录:
env_fns = [make_env(env_class, seed=0, log_dir=f"./logs/env_{i}")
for i, env_class in enumerate(env_classes)]
vec_env = SubprocVecEnv(env_fns)
技术细节
Monitor包装器的工作原理是在每个回合结束时记录回合长度和累计奖励,并将这些信息提供给Stable Baselines3的训练日志系统。在并行环境中,每个子环境都需要独立的Monitor实例来正确收集各自的统计信息。
值得注意的是,Monitor包装器不仅会记录训练过程中的回合统计信息,还可以将完整的回合数据保存到文件中,便于后续分析。这也是为什么需要为每个子环境指定单独的日志目录。
最佳实践
- 为每个并行环境创建独立的日志目录,避免文件写入冲突
- 定期检查Monitor记录的数据文件,了解训练过程中的详细表现
- 在自定义环境中确保正确实现了reset()和step()方法,这是Monitor正常工作的重要前提
- 考虑使用VecMonitor作为替代方案,它提供了更高效的向量化环境监控方式
总结
在Stable Baselines3中使用多进程并行训练时,正确配置Monitor包装器是获取回合统计信息的关键。通过本文介绍的方法,开发者可以轻松解决ep_rew_mean等指标不显示的问题,从而更好地监控和评估强化学习模型的训练过程。理解这一机制也有助于开发者更深入地掌握Stable Baselines3的训练监控系统。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.31 K
暂无简介
Dart
622
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
263
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
794
77