OWASP ASVS 项目中关于令牌安全章节重构的技术思考
2025-06-27 10:19:04作者:舒璇辛Bertina
背景与问题概述
在OWASP应用安全验证标准(ASVS)项目中,关于令牌安全性的内容目前位于会话管理(V3)章节中。这种编排方式引发了技术专家的持续讨论,主要问题在于:
- 无状态令牌(self-contained token)本质上是一种独立的技术实现,不应局限于会话管理场景
- 密码学安全只是实现令牌完整性的手段,不应成为定义令牌类型的核心特征
- 当前章节内容既包含密码学验证要求,又包含令牌内容验证要求,逻辑边界不够清晰
核心概念辨析
自包含令牌 vs 引用令牌
技术专家们经过深入讨论,明确了两种令牌类型的本质区别:
-
自包含令牌(Self-contained Token):令牌本身携带完整的信息和验证机制,典型如JWT。其特点包括:
- 包含完整的声明(claims)信息
- 通过密码学机制(签名/MAC)保证完整性
- 服务端无需维护额外状态
-
引用令牌(Reference Token):令牌仅作为键值,需要查询后端系统获取实际信息,如OAuth的不透明令牌
密码学安全的作用
密码学机制(数字签名/MAC)为自包含令牌提供了:
- 来源认证 - 确认令牌由可信方签发
- 完整性保护 - 防止令牌内容被篡改
- 防重放 - 通过时间戳/随机数等机制
但需注意,密码学安全是自包含令牌的必要条件而非充分条件,其他场景也可能使用密码学保护。
章节重构方案分析
技术团队提出了四种重构方案:
方案1:独立"自包含令牌"章节
优势:
- 逻辑清晰,与具体应用场景解耦
- 便于未来扩展(JWT/SAML等具体实现)
- 测试时可直接引用,不受会话管理限制
内容划分建议:
-
令牌来源与完整性验证
- 密码学算法白名单
- 密钥来源可信验证
- 签名/MAC验证
-
令牌内容验证
- 有效期检查(nbf/exp)
- 受众(aud)限制
- 令牌类型与用途验证
其他方案对比
-
方案2:移至API安全章节
- 适用性有限,自包含令牌不仅用于API
-
方案3:移至输入验证章节
- 不符合直觉,开发者难以定位
-
方案4:维持现状
- 继续造成概念混淆,不利于标准实施
技术实现要点
基于讨论形成的技术共识包括:
-
验证层级:
- 先验证密码学完整性
- 再验证令牌元数据(时效/受众)
- 最后使用业务声明(claims)
-
算法管理:
- 必须维护允许的算法白名单
- 禁止"none"算法
- 对称/非对称算法需明确区分
-
密钥管理:
- 密钥来源必须可信且可验证
- 对于JWT,需限制jku/x5u等头部
-
声明验证:
- 必须验证时效性声明
- 必须验证受众限制
- 必须区分令牌类型(如访问令牌vsID令牌)
行业实践启示
这一技术讨论对实际开发具有重要指导意义:
-
架构设计:
- 明确区分状态管理与令牌技术选型
- 自包含令牌适合分布式场景
- 引用令牌更适合需要即时撤销的场景
-
安全实现:
- 避免将业务逻辑与令牌验证耦合
- 建立统一的令牌验证中间件
- 实施分层防御策略
-
标准演进:
- 技术标准需要保持概念纯粹性
- 功能边界清晰有利于实施
- 术语定义应准确反映技术本质
这一技术讨论体现了OWASP ASVS项目对安全标准严谨性的追求,也为开发者提供了清晰的实现指导。通过将自包含令牌作为独立技术关注点,可以更好地服务于各类应用安全场景。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
195
2.17 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
79

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.36 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
207
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17