InternVideo项目数据集构建策略解析:DIV与FLT技术详解
数据集构建背景
InternVideo作为视频理解领域的重要开源项目,其数据集构建策略直接影响模型训练效果。项目团队采用了DIV(Diverse Sampling)和FLT(Filtering)两种关键技术对原始视频数据进行处理,最终形成了高质量的训练数据集。这两种方法在保证数据多样性的同时,有效提升了数据质量。
DIV多样性采样技术
DIV技术的核心目标是解决长视频数据中片段分布不均衡的问题。在原始视频数据中,较长的视频会被分割成更多片段,如果简单随机采样,会导致模型训练时过度关注那些被分割次数多的长视频内容。
项目团队采用逆向频率采样策略:首先统计每个长视频在片段池中出现的频率,然后按照频率的倒数作为采样概率。这种方法的数学本质是赋予低频视频片段更高的采样权重,从而确保来自不同源视频的片段都能获得相对均衡的表示机会。
FLT数据过滤策略
FLT技术是一套系统的数据清洗流程,包含三个关键步骤:
-
时长过滤:剔除过短(<1秒)和过长(>120秒)的视频片段,这类片段通常包含信息量不足或内容过于复杂。据统计,这一步骤过滤掉了约23.15%的过短片段和0.84%的过长片段。
-
CLIPScore筛选:使用OpenAI的CLIP-ViT-L/14模型计算每个视频片段的CLIPScore(随机选取一帧计算),保留得分在前30%的高质量片段。这一步骤确保了文本-视频对齐性。
-
多样性采样:在通过前两步筛选后的数据基础上,再次应用DIV采样策略,最终得到约1000万条高质量视频片段。
美学数据集构建
除了基础数据集外,项目还构建了专门的美学数据集。与基础数据集不同,美学数据集不依赖CLIPScore筛选,而是基于美学评分进行选择。项目团队设定了一个严格的阈值标准:仅保留美学评分在前10%的视频片段。这种策略特别适合需要高质量视觉输入的下游任务。
技术选型考量
在相似度计算方面,项目团队选择了广泛认可的CLIPScore而非自研的UMT_Score,主要基于以下考虑:
- CLIP模型在学术界和工业界都有广泛认知度和应用基础
- 使用公认指标可以避免论文评审过程中产生不必要的解释成本
- CLIPScore的计算结果具有更好的可解释性和可比性
数据集获取
项目团队已经公开了包含2.34亿视频片段的完整数据集,时长范围从2秒到30秒以上不等。这个大规模、高质量的数据集为视频理解领域的模型训练提供了坚实基础。
通过DIV和FLT这两项核心技术,InternVideo项目实现了数据多样性和质量的平衡,为其出色的视频理解性能提供了可靠的数据支撑。这种系统化的数据处理方法值得其他视觉项目借鉴。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00