首页
/ InternVideo项目数据集构建策略解析:DIV与FLT技术详解

InternVideo项目数据集构建策略解析:DIV与FLT技术详解

2025-07-07 23:31:26作者:咎岭娴Homer

数据集构建背景

InternVideo作为视频理解领域的重要开源项目,其数据集构建策略直接影响模型训练效果。项目团队采用了DIV(Diverse Sampling)和FLT(Filtering)两种关键技术对原始视频数据进行处理,最终形成了高质量的训练数据集。这两种方法在保证数据多样性的同时,有效提升了数据质量。

DIV多样性采样技术

DIV技术的核心目标是解决长视频数据中片段分布不均衡的问题。在原始视频数据中,较长的视频会被分割成更多片段,如果简单随机采样,会导致模型训练时过度关注那些被分割次数多的长视频内容。

项目团队采用逆向频率采样策略:首先统计每个长视频在片段池中出现的频率,然后按照频率的倒数作为采样概率。这种方法的数学本质是赋予低频视频片段更高的采样权重,从而确保来自不同源视频的片段都能获得相对均衡的表示机会。

FLT数据过滤策略

FLT技术是一套系统的数据清洗流程,包含三个关键步骤:

  1. 时长过滤:剔除过短(<1秒)和过长(>120秒)的视频片段,这类片段通常包含信息量不足或内容过于复杂。据统计,这一步骤过滤掉了约23.15%的过短片段和0.84%的过长片段。

  2. CLIPScore筛选:使用OpenAI的CLIP-ViT-L/14模型计算每个视频片段的CLIPScore(随机选取一帧计算),保留得分在前30%的高质量片段。这一步骤确保了文本-视频对齐性。

  3. 多样性采样:在通过前两步筛选后的数据基础上,再次应用DIV采样策略,最终得到约1000万条高质量视频片段。

美学数据集构建

除了基础数据集外,项目还构建了专门的美学数据集。与基础数据集不同,美学数据集不依赖CLIPScore筛选,而是基于美学评分进行选择。项目团队设定了一个严格的阈值标准:仅保留美学评分在前10%的视频片段。这种策略特别适合需要高质量视觉输入的下游任务。

技术选型考量

在相似度计算方面,项目团队选择了广泛认可的CLIPScore而非自研的UMT_Score,主要基于以下考虑:

  1. CLIP模型在学术界和工业界都有广泛认知度和应用基础
  2. 使用公认指标可以避免论文评审过程中产生不必要的解释成本
  3. CLIPScore的计算结果具有更好的可解释性和可比性

数据集获取

项目团队已经公开了包含2.34亿视频片段的完整数据集,时长范围从2秒到30秒以上不等。这个大规模、高质量的数据集为视频理解领域的模型训练提供了坚实基础。

通过DIV和FLT这两项核心技术,InternVideo项目实现了数据多样性和质量的平衡,为其出色的视频理解性能提供了可靠的数据支撑。这种系统化的数据处理方法值得其他视觉项目借鉴。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8