使用Ragas框架从向量数据库生成高质量评估数据集
2025-05-26 09:55:17作者:宣利权Counsellor
在构建和评估检索增强生成(RAG)系统时,创建高质量的评估数据集是一个关键但耗时的任务。Ragas框架提供了一种创新的解决方案,能够从现有数据源自动生成合成评估数据集,大幅减少人工标注的工作量。
数据源选择策略
Ragas支持从两种主要数据源生成评估数据集:
- 文档目录:直接从原始文档文件(如PDF、TXT等)加载数据
- 向量数据库:从已建立的向量存储中检索文档内容
从技术实现角度来看,直接从文档加载通常是更优选择。这种方法能够保留文档的原始结构和上下文信息,为后续的多样化问题生成提供更丰富的基础材料。而从向量数据库读取则需要确保文档块(chunk)之间的关联关系被正确维护。
核心生成流程
Ragas的测试集生成器(TestsetGenerator)采用多阶段进化式方法:
- 初始化阶段:配置生成模型(generator_llm)和评判模型(critic_llm)
- 文档处理阶段:加载并预处理输入文档
- 问题进化阶段:按照预设比例生成不同类型的问题
# 典型配置示例
generator_llm = ChatOpenAI(model="gpt-3.5-turbo-16k")
critic_llm = ChatOpenAI(model="gpt-4")
embeddings = OpenAIEmbeddings()
generator = TestsetGenerator.from_langchain(
generator_llm,
critic_llm,
embeddings
)
问题类型分布控制
Ragas支持三种核心问题进化类型,可通过distribution参数灵活配置:
- 简单问题(simple):基础事实型问题,占比建议50%
- 多上下文问题(multi_context):需要综合多个文档片段回答的问题,占比建议40%
- 推理问题(reasoning):需要逻辑推理的复杂问题,占比建议10%
这种分层设计确保了生成数据集的多样性和评估全面性。
种子数据增强技术
Ragas支持基于种子数据的增强生成,这一特性特别适合领域特定场景。用户可以提供少量精心设计的示例,系统会基于这些种子自动扩展出大规模、多样化的评估问题,同时保持与种子数据一致的风格和质量标准。
最佳实践建议
- 文档预处理:确保输入文档包含完整的上下文信息,特别是跨段落关联
- 模型选择:生成模型可使用GPT-3.5平衡成本,评判模型推荐GPT-4保证质量
- 规模控制:初始测试集建议20-50个样本,逐步扩展
- 质量验证:定期人工抽查生成的问题-答案对,确保语义准确性
通过Ragas框架,开发者可以快速构建专业级的评估数据集,显著提升RAG系统的迭代效率和评估可靠性。这种自动化生成方法不仅节省时间,还能创造出人工难以设计的多维度测试用例,全面检验系统的各项能力边界。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
368
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882